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Abstract

Understanding the spectrum of quantised superstrings in AdSs x S° bosonic target space is the key to
N = 4 super Yang-Mills theory through the AdS/CFT correspondence. In this review of Foundations
of the AdSs x S° Superstring, Part I by Gleb Arutyunov and Sergey Frolov [1], results from the first
two chapters are reproduced explicitly. The ultimate objective of this review is to understand the pro-
cedure of quantising the AdSs x S® superstring perturbatively. First, the Green-Schwarz Lagrangian is
introduced in terms of the quotient Lie superalgebra psu(2,2|4), and eventually fixed in the light-cone
and k-symmetry gauges. Once gauge-fixed, the model undergoes decompactification in preparation for
perturbative quantisation in the large tension limit. The classical superstring in AdSs x S° is also shown
to be integrable via the construction of a Lax pair which takes values in psu(2,2[4).
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Why AdS; x S° 2

String theory began in the 1960’s as an attempt to explain the strong force felt by hadronic particles,
which we now describe with quantum chromodynamics (QCD). Boasting several ‘revolutions’ — periods in
physics when the theory took on a new life — string theory has proven itself to be a strong candidate for
unifying our understanding of classical gravity with the three fundamental forces of the Standard Model.
These are the strong, weak and electromagnetic forces. In the case of bosonic string theory, particles
observed in the real world are identified with modes of a fundamental, one-dimensional object called a
string which vibrates in D = 26 spacetime dimensions.

Supersymmetry, a symmetry relating bosonic force particles to fermionic matter particles, was scruti-
nised since its advent in the 1970/80’s but has yet to be experimentally verified, remaining a speculative
and controversial topic. However, supersymmetry did provide a remedy to crucial pitfalls of bosonic string
theory. For example, particles with negative mass squared m? < 0 (called tachyons) no longer appeared
in the theory and the critical dimension of spacetime (at which string theory can be quantised) went from

D = 26 down to D =10 [2, 3].

In 1997, the AdS/CFT correspondence [4] came to light and became a central focus for high-energy
theorists. In certain limits, this correspondence provides a mathematical connection between a theory of
gravity in D-dimensional anti-de Sitter (AdS) space with a (D — 1)-dimensional conformal field theory
(CFT). The most studied of these pairs is

Type I1IB AdS; superstring <> A = 4 Super-Yang-Mills.

While neither side of the duality is directly observed in our world, and supersymmetry is yet a speculative
and contended feature of our Universe, there is serious interest in deepening our understanding of what
physical features facilitate this correspondence so that we may, for example, one day perform otherwise
intractable calculations in the string dual of regular QCD Yang-Mills. The space AdSs is not only special
by virtue of it being maximally symmetric in the context of general relativity, together with S° it is also
a maximally supersymmetric background for supergravity. Pairing the space with any space other than
S5 does not preserve the full supersymmetry. In the hopes of using AdS/CFT to study ' = 4 SYM, we
were thus cornered into considering AdSs x S°.

==

= 2 in R—1.2 x-x = R? in R*+!

Figure 1. Classical strings (red) on hypersurfaces! AdS,, and S™ for n = 2.

!Because closed timelike curves are not desirable in physics, the AdS surface should be ‘unwrapped’. See Figure 1 of [5].
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This work is a review of [1] in which many results of the first two chapters are reproduced or corrected,
with the end goal of describing the quantised superstring in an AdSs x S° target space. The focus of this
work being to reproduce results explicitly, lengthy calculations from both chapters are included in full
detail but are exiled to the appendices for the reader’s convenience. Quite often results which are derived
in these appendices are used in the main body.

Chapter 1 sets the scene by introducing superalgebra notation and the Green-Schwarz superstring.
This superstring is described by a Lagrangian exhibiting a local fermionic symmetry known as k-symmetry.
We shall derive the symmetry and show its implications for integrability of the model. Various embed-
dings of the coset space for AdSs x S° into the supergroup SU(2,2|4) are presented at the end, with a
particular emphasis on the parametrisation which is suitable for the light-cone gauge fixing to follow.

In Chapter 2 the bosonic string is used to illustrate the light-cone gauge and first-order formalism which
helps in the transition to Hamiltonian language, and eventually quantisation. The GS Lagrangian is then
fixed in the light-cone and k-symmetry gauges before proceeding in the planar limit to quantisation.



Chapter 1
String sigma model

A sigma model describes a particle or object living on a manifold. We will be studying in detail the model
consisting of a single closed superstring propagating in the coset space

PSU(2,2|4)
S0(4,1) x SO(5)

= AdS; x S° + fermions . (1.1)

For this reason, we will sometimes refer to the AdSs x S° superstring as the coset sigma model. As
previously mentioned, the superstring captures both bosonic and fermionic features. The bosonic modes
of the string vibrate in AdSs x S° and one can think of their fermionic counterparts as a ‘spin’ at each
point along the string. This is hard to visualise, but then again so is AdS5 x S° .

The qualities of ‘bosonic’ and ‘fermionic’ will be encoded into the group structure of matrix blocks
entering in the Lagrangian. The slash in PSU(2,2/4) is responsible for this distinction and turns the
group into a supergroup. In the coming section, we will familiarise ourselves with the language of these
superspaces so that we may understand the Lagrangian describing such a supersymmetric string, namely

& = —g [vaﬁ str (Ag)A(;)) + ke str(Agl)A/(Bg))}. (1.2)

This Lagrangian is due to Michael Green and John Schwarz and features a term with the factor x. This
second term is the benefactor of supersymmetry and also provides the model with a vital property known
as k-symmetry. A principal goal of this chapter is elucidating what exactly this symmetry entails and
how we can use it to simplify the quantisation procedure.

In later sections the spacetime degrees of freedom of (1.1) will be embedded explicitly into supermatri-
ces entering the Lagrangian which belong to the Lie superalgebra su(2,2[4). This will make manifest the
various symmetries of the model and will lay a clear path forward for canonical quantisation (or at least
a version of it). Through the construction of a certain quantity called a Lax pair, we will end up showing
that this model is classically integrable. An interesting connection will follow between this property of
integrability, the equations of motion for . and k-symmetry.

In the interest of space and time, facts and terminology from bosonic string theory are assumed. The
reader is pointed to [2, 3, 6] for an introduction to the subject.
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1 String sigma model

1.1 Super-duper algebra

Here the superalgebra su(2,2|4), for which the considered matrix realisation admits a Z4-grading, and
its quotient psu(2,2[4) will be introduced. The generators of the bosonic subalgebra of su(2,2[4) are
constructed explicitly in terms of Dirac gamma matrices in preparation for the coset sigma model, which
describes the dynamics of a string on the manifold (1.1).

Matrix realisation of su(2, 2|4)

A Lie supergroup is a Zg-graded Lie group [7]. That is, the Lie group G is a Lie supergroup if we have
G = Go®G1, with even part Gg and odd part G1 such that any two homogeneous elements a € Gq, b € Gg
satisfy ab € G4 wWhere the degrees |a| = a and |[b| = 3 are in the abelian group Zs = {0,1}. This way,
a product of two odd or two even elements is even, whereas the product of one odd and one even element
is itself odd. The corresponding Lie superalgebra 4 = InG = 90 ¢ ¢(1) with homogeneous elements
{a,b,¢,...} is equipped with the Lie bracket [, ] satisfying

[Cl, b] = _(_1)|aHb|[b7a]> (13)

[a, (6, ¢]] = [[a, b], ¢] + (=1)"**/[b, [a, ¢]]. (1.4)

As you can see the bracket is antisymmetric unless both arguments are odd. For this reason, this bracket
will play a very important role when we want to construct matrix commutation relations for bosons,

and in the same framework, matrix anti-commutation relations for fermions. In analogy with the group
product, the bracket satisfies [¢(®), ¢(8)] C @(@+5) modulo Z.

The special linear Lie superalgebra sl(N1|N2) = ¢ 0 3@ over the complex field, with dim ¢ = N;
and dim ¥(1) = Na, consists of square (N1 + Na) x (N7 + Na2) matrices of the generic form

M= (:’; z) (1.5)

with vanishing supertrace str (M ) = tr(m) — tr(n). Such matrices M which are diagonal are even, while

those which are off-diagonal are odd. The Lie bracket for s[(N1|N2) is always the standard matrix com-

mutator. One might ask, what happened to the odd-odd anti-commutator? The matrix entries of § and

n are taken to be Grassmann variables such that, choosing some basis for off-diagonal matrices {E;},
[M, M’] D) [GZEZ, QQEJ] = QZHEEZEJ — GQGZEJE, = 919;{EZ, Ej}.

We see that, indeed the Lie bracket is symmetric if we consider {F;} to be the basis of odd elements.
We will be considering subsuperalgebras of s[(4|4) which is itself spanned by supertraceless 8 x 8

matrices as above, with m,n being even 4 x 4 matrices and 6,7 being odd 4 x 4 matrices. In addition to
being supertraceless, elements M of the special pseudo-unitary Lie superalgebra su(2,2|4) also satisfy

MH + HM' =0, (1.6)

H= <§ 1?4)’ » = (%2 _%2>, (1.7)

-7 =
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1.1 Super-duper algebra

and 1, is the n x n identity matrix. Writing out the above conjugation explicitly, this implies
_ > 0\ /mt o\ /= o0 iy spt
M=-HM'H' =~ = -
(0 114) <9T nT> (0 114> ( o' nf

m=—-Xml%, n=—nl, n=—6'x. (1.8)

such that

Clearly m and n span the unitary Lie algebras u(2,2) and u(4) respectively. The generator ilg of u(1) is
also an element of su(2,2[4), which means the bosonic (even, diagonal) subalgebra of the latter is?

5U(2,2]4)even = sU(2,2) @ su(4) ®u(l) C u(2,2) du(4) @ u(l). (1.9)
The quotient algebra psu(2,2]4) is defined as the quotient of su(2,2|4) over the u(1) generator, i.e.

psu(2,2]4) = “fif"”. (1.10)

Many times throughout the text a complex multiple of 1g in su(2,2[4) will be taken to 0 in psu(2,2|4).
Elements of this quotient cannot be linearly represented as 8 x 8 matrices as the identity would be missing.

Writing elements of the bosonic subalgebra su(2,2) @ su(4) ®u(1), and its complement in su(2,2|4) will
be crucial when deriving certain properties of the superstring. To this end, we should identify a suitable
basis for both su(4) and su(2,2). We will be using the following representation of Dirac’s matrices.

0 0 0 -1 0 0 0 1 0 010
Lo o010 s [0 0o io0 s (o001
T7lo 10 o] T7lo -0 of T 100 of
-1 0 0 O -1 0 0 0 01 0 O
(1.11)
0 0 -1 0 1 0 O 0
0 0 0 1 01 O 0
4 _ 5 _ —
T o0 o0 of "=loo 1 0|7
0 -i 0 O 00 0 -1
They obey the SO(5) Clifford algebra relations
Yoyl it = 2691y (1.12)
fori,5 = 1,...,5. All of these matrices are hermitian, meaning that iy are elements of su(4) since for any

i <5, with no summation, (i7%)fiy* = 4%y’ = 1, and the determinant of any 4 or i* is clearly 1. To show
s1(4) ~ 50(6), we will extend the spinor representation of s0(5), spanned by n® = i[vi, 79] and satisifying
for i,j... < 5. In particular, we add the elements? n = %vi such that the above commutation relations
are satisfied but this time for 7, j... < 6. To see this, one performs the calculations in A.1 yielding

— o0tk =6,
[niG7 nkl] _ _|_56knil k= 6, _ 56knil . 6ikn6l o 56lnik + 5iln6k. (1'14)
_5ilnk6 + 5iknl6 ]{I,l 7& 6.

2To ensure elements of the subalgebra are supertraceless, m and n must be separately traceless. So u becomes su.
3Looking at the calculations done in the appendix, it should be clear that —357" are valid extensions too.
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1 String sigma model

Thus the su(4) matrices i7* provide a basis for the real vector space s0(6).

To describe su(2,2), we should turn our attention to extending so(4,1) instead and show so0(4,2) ~
s1(2,2). We now set m¥ = %['yi,wj] for i,j = 0,...,4 and distinguish 1° = i7°. These matrices are taken

from the generators of su(2,2) = spangp {%fyi, %75}. The pseudo-orthogonal so(4,1) relations are

7, k) = gl — il _ itk i,k (1.15)
with signature n = diag(—1,1,1,1,1). If we add in the elements m® = 4%, a similar set of calculations in

A.1 shows that the above relation is still satisfied for ¢,j =0, ..., 5 if we set n = diag(—1,1,1,1,1,—-1). To
summarise, the upper and lower diagonal blocks are respectively spanned by

su(4) ~ so(6) = spangp {;7’, Z[ 1,73]} ) i,j=1,...,5,
L . (1.16)
.1 . .1 . o
5“(2,2) ~ 50(47 2) = Spa’nR {2717 5’757 1[7177J]7 4[71775}} ) ] = ]-» 74

Finally, i1g spans u(1) such that these generators together span the bosonic subalgebra su(2,2|4).

Z4-grading

In addition to the Zs grading we described above, it turns out that the automorphism group of sl(4/4) is
such that we can refine the grading to Z4. If we define the hypercharge T and take some generic matrix

M € sl(4]4) as
- ]14 0 o m 6
(B0} e (m ), wrm

then there exists a continuous automorphism d,(M) acting as

dp(M) = ;n PP\ ez Ymppre=3Tnp, (1.18)
p 1p n
p

Moving on to the finite subgroup of automorphisms, if we define the supertranspose M*' of a matrix

M € sl(4]4) as
) mt —pt
Mtz(et Z) (1.19)

n

then we see that M — —M?$! is an automorphism of order four. Note that (M)t = §_1(M). Similar to
this ‘minus supertranspose’, we will choose the automorphism

M — QM) = -KMs K1 (1.20)

to refine the grading to Z4 where we have defined the matrices

0 -1 0 0

(K 0 s |10 0 0

K‘(o K>’ E==77"=1¢ o 0 =1 (1.21)
00 1 0



1.2 Green-Schwarz superstring

Note the definition of Q(M) immediately implies Q(M; M) = —Q(M2)Q2(M7). We start by introducing
the notation ¥ = sl(4]4) such that the graded subspaces of the vector space ¥ are

W ={Meg | QM) =i*M}. (1.22)
The vector space 4 and some generic element M € ¢ can be decomposed uniquely with respect to Q(M):

=90 gyl g9 ggB),

M=MO 4 MO 4 @ 4 6, (1.23)
To see that [9(®),9®)] ¢ (1) modulo Z4, we can calculate
QM@ pM®))) = —jotbpr®) prl@) 4 jatbpr(@) prb) — jotbprl@) ) (1.24)

According to the above, if we view M and M® as even, then MM and M®) would be odd. Given
M € 4 = sl(4]4), its projections M*) e ¢(*) can be expressed as

M®F) = i (M +13FQ(M) +12Q* (M) +iQ3 (M) (1.25)

since in this case Q(M®*)) = i* M%) as required*. In fact, the automorphism Q(M) restricts to su(2,2|4)
such that we can relabel ¥4 = su(2,2|4) and think of the above decomposition as the Z4-grading of
su(2,2/4) with respect to the action of Q(M). See A.2 for details of this restriction. Reassuringly, the
explicit expressions are diagonal for even components and off-diagonal for odd components:

y© L (m—EKm' K 0 o 0 0—iKn' K~
2 0 n—KntK=1)’ T2\ +iKntK! 0 ’ (1.26)
A L (m KmfE 0 @ L 0 0 +iKn' K~ '
2 0 n+ KntK~1)’ T2 \0—iKntK! 0 ’

We know the bosonic subalgebra su(2, 2)@su(4)du(l) C su(2,2[4) coincides with the even-graded subspace
40 392 c @ so there should be a way to express the even components M *) in terms of the generators
of the bosonic algebra (1.16). It is argued in A.2 that the general forms of the even components are in
fact linear combinations of the bosonic generators. For real coefficients mgy,n, and i, =1, ..., 4, we have

O (mij[vixyj]Jriméh’}'P] T ) (1.27)
0 nf [y, 7]+ nh' 2]
mbyt 4 imygy® 0
M<2>:< S i 4 eS| (1.28)
37" T 1ngYy

The central element ilg € u(1) C su(2,2[4) also occurs in ¢ since Q(1g) = —1s.

1.2 Green-Schwarz superstring

Following our discussion of how to decompose elements of psu(2,2|4), we will now introduce the Green-
Schwarz Lagrangian density (1.2) describing a closed supersymmetric string in an AdS5 x S° background
and derive its equations of motion. Kappa symmetry (k-symmetry), a local fermionic symmetry stemming

4This follows from Q*(M) = M and i** = 1.
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1 String sigma model

from the Wess-Zumino term in the Lagrangian, is a property of the model vital for quantisation. We will
spend some time deriving the symmetry and exploring its implication for the gauge transformations of
fermionic degrees of freedom.

Consider a closed one-dimensional supersymmetric string propagating in an AdSs x S° background.
Its worldsheet is a cylinder of circumference 27r parametrised by the ‘time’ coordinate 7 and spatial
coordinate o such that —ar < o < 7r. These are usually grouped as (¢¢) = (7,0). The action for such a

string is
r
Sz/dT/ do &, (1.29)
—T7r

where .Z is the Lagrangian density describing the dynamics. The Lagrangian will be accompanied by
a constant prefactor which is the dimensionless string tension T'= R?/2ra/, whereby R is the radius of
AdS;5 and S5 (see Figure 1) and o is the Regge slope (e.g. [2, Ch. 2|). This tension T is related to the ’t
Hooft coupling constant A of the dual Yang-Mills theory as T = v/\/2m.

)7
+ x (7-) AdS5 e XM(7'7 0')

| > R3 > S°

Figure 2. Worldline of a point particle in R%! and worldsheet of a closed string in AdSs x S°.

Lagrangian

We need a few more ingredients to understand (1.2). Let g be an element of the supergroup SU(2,2|4).
Introduce the matrix one-form taking values in su(2,2[4)

=—g ldg =AY + AW 4 4@ 4 4G (1.30)
where the Zs-graded elements A®) € @*) satisty Q(A®)) = i*A(*) and
AF) = i [A+1%%Q(A4) +12FQ%(4) +i*Q3(4)]. (1.31)
This one-form has zero-curvature (dA — A A A = 0), which in component form translates to
O0aAp — 0gAa — [Aa, Ag] = 0. (1.32)

In terms of this su(2,2|4) element A,, Green and Schwarz proposed the following Lagrangian density to
describe a superstring propagating in the coset (1.1):

T
Z = -3 [’yaﬁ str(Ag?)A(B?)) + ke str(A(()})A(;))] ’ a,B€{r o} (1.33)

— 11 —



1.2 Green-Schwarz superstring

The rescaled worldsheet metric 8 = h*8 /\/—h = 75 is the Weyl-invariant combination of the worldsheet
metric hog. In general,

Yo = hapgV—h, det(7a3) = det(y*?) = (vV=h)?/h = —1, (1.34)

and in conformal gauge we would set (v,g) = (v*8) = diag(1, —1), or equivalently v, = 1,775 = 0. By
convention we take the Levi-Civita symbol to satisfy e = 1 where ¢*® = —f®. The parameter x will
play a major role in quantising the model, wherein we will exploit a gauge symmetry called x-symmetry
which is a consequence of k2 = 1. This prefactor x multiplies what is known as the Wess-Zumino term.
Let us assume for now « is a generic c-number. In that case,

* r e’ * * _Q * T e *
L = ~3 [7 ﬁstr(Ag)Ag)) +K'e Bstr(Ag})Ag’)) } =-3 [7 Bstr(A(;)TAg)T) +K'e ’Bstr(Ags)TAS)T)}

= *% [Waﬂ Stl"(HA(;)Ag)H_l) + K*e®P str(HAg))AS)H—l)}

where we used the property str(M ) = str(Mt) and the reality condition for homogeneous elements
AR = g AR F—1 Clearly for the Lagrangian to be real, we must have x = x* also.
As for the equations of motion for this Lagrangian, if we define
_ 2 _Fk (1) 3)
A =T [P AG) - ZeoP (a0 — AP, (1.35)

then the variation of the action with respect to the element g takes the form derived in A.3, namely

08 = // d*o str(5A.A%) = // d?o str[gL0g(0aAY — [Aa, A%])]. (1.36)
Then, 05/0g can be set to zero to find the equations of motion as an element of su(2,2|4):
0o\ — [Aq, A% = p - 1. (1.37)

The above obviously vanishes modulo i1g and we will be careful moving forward when working in psu(2, 2|4)
since only the traceless part of the equation of motion will be under consideration. In turn this can be
projected onto ¥ and ¥(13) to give

120a AL — 7 P[AL), AP 2 (14, AL — 1A, AP = o, (1.38)
v P1AD, AP rreP (4D, AP = 0, (1.39)
v P1AL), A —keP 14D, AP = 0. (1.40)

Treating the worldsheet metric 7,4 as an independent dynamic field and solving 6.5/6v,3 = 0 results in
the equations of motion

str(45)45)) — %WW str(APAP) = o. (1.41)

These are famously known as the Virasoro constraints and will play a recurring role in this work. Some-
times these are written as T,,3 = 0, since the stress-energy tensor is proportional to 4.5/ ShoB [2].

A common idea in the Lagrangian formalism is to identify the global symmetries of the system such that
the associated Noether current’s conservation simplifies the problem. This quotient factor SO(4,1) x SO(5)

— 12 —



1 String sigma model

Figure 3. Subjected to the left action/multiplication of a PSU(2,2/4) element G, a chosen coset repre-
sentative g in PSU(2,2[4)/(SO(4,1) x SO(5)) becomes some other element Gg in PSU(2,2|4). To rewrite
this element in terms of a coset representative (identified by the black arrow), one must introduce a com-
pensating element b in SO(4,1) x SO(5) such that Gg = g’h. We interpret this as G: g — ¢'.

is the isometry group of AdSs x S° , whose coordinates will eventually be embedded into the coset element
g. Because of this, we can think of g € PSU(2,2|4) as a coset representative modulo SO(4,1) x SO(5).
Consider in Figure 3 an analogy to SO(3) rotations of a point on a sphere S? = SO(3)/SO(2), whereby the
arrow from the center of the sphere to the point can be spun about itself, corresponding to a compensating
SO(2) transformation. As discussed in Chapter 1, the Lagrangian is invariant under SO(4,1) x SO(5)
transformations such that global PSU(2,2/4) transformations act on — and result in — coset representatives
g. This gives rise to a Noether current J = gA,g~"! associated with the Lagrangian symmetry under left
action g — Gg by global element G € PSU(2,2[4) since . only depends on A = —g~!dg. The current J*
is conserved (see (A.31)) thanks to the equations of motion (1.37). More precisely,

Do d® = g (0aAY — [A% Ay]) g7 ! = pls, (1.42)

which tells us only the traceless part of J¢ € su(2,24) is conserved.

Kappa symmetry

We keep mentioning that the Green-Schwarz Lagrangian enjoys a local fermionic symmetry known as
k-symmetry. In this subsection, shadowed by explicit calculations in A.4, we will derive this symmetry
by showing that §..Z = 0 under the right action of a group element e€ in PSU(2,2|4),

g — ges, (1.43)
where € = ¢(7,0) is a local fermionic element in psu(2,2[4). We start with A — A + §.A where

0 A =—(e ‘g H)d(geS) — A= —e g ldge® — e g lgde* — A
~ (Ig —e)A(lg +€) —e “e“de — A =[A, €] — de. (1.44)

— 13 —



1.2 Green-Schwarz superstring

To find the change in Lagrangian 6..Z following this group action, we must find the decomposition of d.A.
Noting that [%(“),%(b)] C @(a+b) and that e is fermionic so that €@ = 2 = 0, we get by inspection

5.A0 =140 B 4 [A(3 M,

5 AN = [A©) D] 4 14 B3] — g, (1.45)
5. AP =14M M) 4 [A(3 @), '

5 AB) = [A(O)’ e(3)] + [A 6(1)] de®

In principle we have all the ingredients to determine how the Lagrangian transforms. As derived in A.4,
—%5@3 = 67" st (A AD)) — str (P?f AP, AD1D 1+ P [AD), AS)]G(S)) : (1.46)
where we introduced the projectors Pj:"g = %(70‘5 + ke®P). Tt follows that, for k2 =1,
P§5P¢56 = i(wa%? — &280‘57@5"5) = i(vaﬁ — n27a5) =0.
Similarly, Pﬂ‘:“‘sP g 5/:' = Pi‘ﬁ . Compiling identities, we see that the projection operators are orthogonal®:
PP+ PP =n8 pp P =P PP P = (1.47)

For any vector V* we define the projections accordingly; V{ = ij Vg = PﬁaVB. Returning to the change
in the Lagrangian (1.46), the equations of motion (1.39) and (1.40) can be recast in the form

PPIAD, AQ = —PoP1AR) AP = (A7), AP =, (1.48)
PR, AP = —PePlall) AR = (4, AP =, (1.49)

such that 5
0 = 5y P Str(Ag)Ag)) ([A((le A8 [A( ) A(_2),6]€(3>) _ (1.50)

Our goal is now to check that 6.7*? can be brought to a suitable form such that §..Z = 0, which would
mean this local fermionic transformation constitutes a symmetry of the model. First, one consequence of
(1.47) is that A, 4+ and A, 4+ are in fact proportional. Indeed, we have

1 1
0= PEAgr = PP = L0 ke A 1 1007 ko)A,
1 1 1 1
=7 — 0 = 5('}/7—7— :l: K}E:TT)ATFF + 5(’}/7—0 :l: K/(‘:‘TO—)AU’:F = i'YTTAT’q: + 5(77-0' :l: H)Agv:':7

and so we see that the different connection projected components A, + are proportional since

TO :t K
y — Aok (1.51)

To proceed any further, we will need to specify the forms of () and ¢3). We ansatz

() Z 4@ Dy D@

& 1.52
(3 — A((j)w(f),a RORS Affl (1.52)

5They are orthogonal only if kK = 1, which we will soon learn entails x-symmetry.
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1 String sigma model

To see that the homogeneity of €*) is preserved for Iigf)’a e 9*) and k = 1,3, we calculate

k),a k)«
(W) =~ L)%, — a(AZ)aEd )
_ _12+k (HEE)7QA&27):|: + A(()Z):Fﬁgf)’a) —_ ikG(k)-

In addition, we can ask what requirements the matrices x*) should satisfy such that the fermionic elements
¢®) belong to su(2,2[4), i.e. €®) = —HeWTH. Using the fact that A®) € su(2,2|4), we find

HW H = —AQL 5 a1t — gl TH— AR £ - AC) k
which requires the reality condition x*) = Hr®)TH—1,

The components A can be taken as traceless since ilg € ¥, which does not contribute in the
supertrace of the Lagrangian (1.33). Comparing with the generic form (1.28), this means we can assume

0 iniyt 8

[N 1
A® = <m v 9 ) + < str(TA®), (1.53)
where m’ and n’ are real coefficients for i =1, ...,5 except m® which is imaginary. In this way,
ETOE 0 N M0+ 7Y
J

We just showed that A, + and A, + are proportional in (1.51), which means that mfxim%i = ma,imzi,i
no matter «, 8 and we can rewrite

L S
A((f)iA(gQi _ my, w1y 5{7"} 0 ) (m’a’imfg’ih i Oi )
- 0 —ng, 115, 151777} 0 S e
1 . . S 1 . . S
= §(mé,imlﬁ,i + ng,+70,+)T + §(m31,imzﬁ,:|: — Mg, +Ng,+) s
1 9 (2 1 . . o
= STstr(ATL AR, ) + S (mh wmly . — ki, 1)1s. (154)

Substituting our expressions for ¢*) and these newly found properties of A we find in A.4 that

1

2 o , @
— 202 = 6y st (AT AT)) — S str(AZL A ) st (T[T, AD)

1 (2 2) 3),8 4(3),a
-5 str(Aa’)JrA(ﬂer) str(T[/@(, ,A,) ]) (1.55)

AP (ot (A 242

We used str(YM) = tr(M) for M € psu(2,2|4). Although it may seem like the trace whose argument is a
commutator should vanish, the matrix commutator is symmetric since it is acting on odd matrices x(1:3)
and A(13), This explicitly shows the GS Lagrangian is invariant under this local fermionic transformation
g — gexpe(r,0) provided
1 1), 1), 3), 3),
6y = S tr (1, AP 4 [{G A99)). (1.56)
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1.2 Green-Schwarz superstring

This form of the variation shows explicitly that 6.4 is a real tensor since, according to the reality
conditions of k and A, we have

(5721 = —5 tr (<D, AP H O ADA ) = 08,

Crucially, such a form of §.v*? is obtained if and only if Pjo:‘ﬁ are orthogonal, which tells us that k-symmetry
is obeyed if and only if x? = 1. Thinking back to when we showed the parameter must be real, this means
k = £1 is the condition for k-symmetry.

Kappa symmetry gauge freedom

Now that we know the k-symmetry transformations are in fact a symmetry of the Lagrangian for x = 41,
we can ask if any fermionic degrees of freedom can be reduced as a result a corresponding gauge freedom.

Throughout Chapter 2, we will be employing the light-cone gauge in which we identify a time direction
t along the longitudinal component of AdS5 and an angle ¢ around the equator of S° (see Figure 1). The
bosonic algebras so0(4,1), with distinguished element iy corresponding to ¢, and s0(5) correspond to AdSs
and S° respectively. For the moment, we can ignore the transversal dynamics (anything other than ¢ and
¢) such that the component A®) has the generic form

: 5
2) _ 1z 0
A < 0 iy’y5>

where x and y are linear combinations of ¢ and ¢. This is a valid assumption since any element in so(5)
can be brought to 7° by an su(4) transformation, e.g. +* — (iv?)(i7)y* = —°. If we work on-shell, i.e.
when the equations of motion are satisfied, then the Virasoro constraints must be enforced. They are
equivalent to

str(Ag,)_A(;)_) =0 = xﬁ:xi = yiyi

In particular, this is satisfied by y = 2. If we recall (1.51), the element ¢() (1.52) can be rewritten as

1) — 4?2 2 _ (7 N (Do _ 0

Substituting the above generic A gives us

CH 0 atkak) o 0 ¢
T\ Do + ) 0 I =S b R

.|.

where we defined 2 = X371 + 501X and used the su(2,2(4) fermionic reality condition s = —303 in
Yo + 103 = E%IE — %Jlr = 2%,
If we let (r1);5 = 55 for entries 4,5 = 1,...,4, we find
w1 2 0 0
P
=" ) 7233 7234 . (1.58)
0 0  —s43 —su3
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1 String sigma model

Thus, €M) depends on 8 real fermionic parameters, namely the 8 entries »;; in the matrix € . A similar
discussion holds for ¢(®) which also depends on 8 fermionic parameters. All together, we can eliminate 16
fermionic degrees of freedom with ¢! and ¢®) such that any odd element x can be reduced to

(1.59)

e 06 O OO O oo
e 06 O OO O OO
SO e 0O O OO
SO e 0O O OO
S O OO 0 OO
O O OO 0 OO
OO OO DO e e
OO O OO O e e

Here the bullets indicate entries of the matrix realisation of y which cannot be gauged away by k-symmetry
transformations. (This follows from the expressions for 6.A(1) and §.A®) in (1.45) which imply one can
find € such that the above form is fulfilled.) There are in fact 16 real degrees of freedom. It may seem like
x only has 8, since for any odd matrix the upper block 6 and lower block 7 are related by the fermionic
su(2,2|4) reality condition n = —#T% (1.8). However, the fact that we took the superalgebra s[(4]|4) over
the complex field means each entry has two real parameters. This fermionic gauge freedom will prove to
be extremely useful in Chapter 2 when we fix the above gauge before proceeding to quantisation of the
light-cone Hamiltonian.

1.3 Integrability of classical superstrings

This section is a small detour from quantisation. A main gust in the sail of research into integrability of
various AdS5 x S° models was the presentation of a Lax representation of the equations of motion which
is tantamount to showing the model is solvable, as we will see.

First, we will review the general concept of integrability and apply it to the principal chiral model
to illustrate how one might construct a zero-curvature Lax representation from conserved currents. We
will then show the Green-Schwarz string sigma model we just discussed is integrable by constructing
such a flat Lax representation of the equations of motion. Interestingly, integrability of the model with
this particular choice of Lax pair is in some way equivalent to the Virasoro constraints and necessitates
k-symmetry of the Lagrangian.

Classical integrability

In a physical context, integrability refers to the possibility of ‘integrating’ the equations of motion so as
to find a solution to the problem at hand. Consider the following system of partial differential equations

ov
870' = LO—(O', T,Z)\I], (160)
ov
5 = L.(o,7,2)7, (1.61)

where ¥ is a vector of dimension ¢ and L., L, are ¢ X ¢ matrices which all depend on a spectral parameter

z taking values in C?. If we differentiate (1.60) with respect to 7 and (1.61) with respect to o, we get
O*v
lokgoles

=0;Ly(0,7,2)V + Ly(0,7,2)0; 9,
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1.3 Integrability of classical superstrings

9%
0oo0T

=0y L+ (0,7,2)V + L (0,7,2)0,V.

If we now substitute in the original equations for 9;¥ and 0, V¥, and equate the second order derivatives,
O0-Ls — Os Ly — [Lr,Ls] = 0. (1.62)

This can be reformulated as the zero-curvature condition for connections L, and o = o, T;

OaLg — 0gLa — [La, Lg] = 0. (1.63)

If these connections satisfy (1.63) for all values of the spectral parameter z, then L, are called Laz
connections while (1.63) is the Lax representation of the integrable system of partial differential equations.
We define the monodromy matrix 7'(z) as the path-ordered exponential of the Lax connection L,

27
T(z)=éxp | do Ly(r,0,2). (1.64)
0
It can be shown (see A.5) that
0;T(z) = [L(0,7,2),T(2)]. (1.65)

This equation implies that the eigenvalues {u;} of the matrix 7'(z) are constant in worldsheet time. It
follows by considering the trace of T"(z), whose 7 derivative is the trace of [L-(0,7,z),T"(2)] and thus
vanishes. Assuming 7'(z) is diagonalisable, it follows that

OrtrT(2) = 0rtrT(2) = .. =0 = Y Oprpi=» Oppf = .. =0 (1.66)

up to the dimension ¢ of T'(z). The eigenvalues are integrals of motion, which means the conservation laws
of the system are encoded in T'(z), thus motivating the identification of the Lax pair L, of the model.

Explicit example - the principal chiral model

To gain some insight before trying our hand at the Green-Schwarz superstring, we will find a Lax pair
for a simpler model. Remembering the one-form A, = —g~'0,g, the action for the principal chiral model

reads ) 1
S = —3 // d?o B tr(aaggflaﬁggil) -9 // d*o 7 tr(AaAB)- (1.67)

In this case, g = g(7,0) is some generic local Lie group element. To find the variation of the action 65
with respect to g and thus the equations of motion, we need to find®

1
5 tr (7P AaAg) = 7P tr(6AaAp). (1.68)
Substituting the expression (A.20) for 6 Aq,

1 _ _
570‘5 trd(Aadg) =P tr [ — g7 0gAaAp — g7 '0a0gA5]
=7 tr [6g0aAgg ] = —v*P tr [0 0904 (97 0p0)] (1.69)

SIn this step we treat v, as a constant as we are implicitly finding the variation of S with respect to g only.
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1 String sigma model

so that 05/0g = 0 implies the equations of motion aa(vaﬁgflaﬂg) = 0. This is because the trace of this
derivative does not necessarily vanish as the supertrace of elements of su(2,2|4) would. We can manipulate
(1.69) to find the same equations of motion in a different form,

%v“ﬁ trd(Aadg) =’ tr [g7 000 0000 1950 — g~ 1000 9adpg]
=" tr [0g0~ ' 9a (9508~ ")] (1.70)
which this time implies dq (7*? afgggfl) = 0. Putting this all together, the equations of motion are
0a(v*7971059) = 0 = a(v*" 95987 "), (1.71)
and they can be conveniently written in terms of the (corrected) left and right currents
Ap =g 0sg, A} = —7"P0pg0" (1.72)

as
DoAY = 0 = 9, AC. (1.73)

A, is called the right (Noether) current, and A; the left current because of their invariance under right and
left action of g by a constant group element G. In particular the left current coincides with our previous
definition of A, up to a sign.

The flatness of Lax pairs in this model must be invariant under o and 7 coordinate reparametrisation.
This is because the Lax flatness represents the equations of motion which are themselves reparametrisation-
invariant. (One can see this by looking at the action or simply (1.71).) It follows that the Lax connections
L., must then be one-forms. To see this, let L, be a k-form, i.e. L, € QF and look at the zero-curvature
condition (1.63)

3aL5 — aozL,B — [La, Lg} =0. (174)
—_—— N —
in Ql+k in Q2k

For this equality to hold under reparametrisation, both terms must transform with the same overall
prefactor, which means they are of the same tensor type. In other words, Q% = Q2! so0 k =1 and L, is
a co-vector or one-form. Consequently, we introduce the Lax connections

Lo = l1Aq + layape™ A, (1.75)

where (1,05 are parameters to be determined and A is either A™ or A!. It is natural to construct the
Lax connections in terms of the currents, as the latter appear in the equations of motion and the Lax
representation (1.63) would involve taking their derivative. In two dimensions we can recast the flatness
condition (1.63) as

260 L — Lo, L] = 0. (1.76)

To show this we sum over contracted indices o = 7,0 with convention €™ = 41 and get

260 Lg — €P|La, Lg] = 2(0- Ly — 8y Ly) — [Lr, L] + [Lo, L]
=2(0;Lo — OyLy — [Lr, Lo]) = 0.

Using the identity e*#vyg,e?® = v, we substitute (1.75) into (1.76) which reduces to

0 = 26%P0, (01 Ag + lay3,eP Ap) — Pl Aq + Loryape™® Ap, 11 Ag + lay5,"° As)

- 19 —



1.3 Integrability of classical superstrings

= 20160 Ag + 20900 (P g, Ap) — 3P| Ag, Ag] — £126%P 5,670 [ A, As)
— 01026%P o P Ay, Ag] — 03P aue P 5,0 (A, As]
= 2016°P 0y Ag + 20905 A% + P (13 — 12)[An, Ag). (1.77)

The second term vanishes because of the equations of motion 9,A% = 0 (1.73). Let us now show the
zero-curvature condition for the left and right currents (1.72) by using g~ = —g~'dgg~'. For the left,

Oa Al = 0a(97'0308) = —97 ' 9000 ' 950 + 07 9a0sg
—> DaAf — 0pAL = (0709, 97 " 0ag] = [AG, AL).
And for the right,

OaAly = —00(098™ ") = —0a0pga™" + 0309 ' Oagg ™"

= 0a Al — O Ay, = [0300 ", 0agg™ '] = [A}, A}
We can summarise these zero-curvature conditions into one;
O0aAp — 0gAa + [Aa, Ag] = 0. (1.78)

Note that the sign of the commutator is determined by which current carries the minus sign (in this
convention, it is the right current). Returning to (1.77), the newly-found flatness condition (1.78) implies

2016 0o Ag + P (03 — 13)[An, Ap) = 2016°P D, Ag — P (03 — 13)(00Ap — DA
1

0 = 2e"? (010,45 — 5(53 — 3)(0aAp — 954A4))
0=2e"P (01 — (03 — £3)) 0aAp. (1.79)
For (1.79) to vanish, we must then have E% — Z% + 01 = 0 for both A", Given ¢, this equation has two

solutions for ¢1. Introducing the spectral parameter z, these solutions are o = z/(1 — 22) and either

2
1—22
__
1— 22

0=+ assigned to A = A, or (1.80)

0= assigned to A = A". (1.81)

The explicit sign of ¢ can always be attributed to the value of z, so is not fixed. Substituting in these
values for ¢;, we obtain the left and right Lax connections

2

z zZ

Lla = +mz4la + m’}@ﬁfiﬂpz‘llp, (182)
1 Z

Lg = —WAQ + m’ya[}é‘ﬁpAz. (183)

We finish by showing that the connections L' and L" are connected by the gauge transformation
L" = hL'h=t + dhh L, (1.84)

when h = g. We can show (1.84) component-wise by employing the expression (1.83), which becomes

2

z _ z _ _
:g(mg laag— m%ﬁg 1669)9 !

gLlg™!
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1 String sigma model

2

z _
=ty a0 -

z
1— 22

1

£apd’9g”
2
V4 _

l . 22)8agg t-

= gLl ' + .00 = (1 + !

£apd’gg”

z
1 1—22
Lo Z Bl
=T pfet T pt s =la

In this sense, they represent the ‘same’ integrability. We have just shown how one would go about
constructing a Lax pair for a simple action. In principle, there is no protocol for constructing such L,
other than guessing quantities (such as these one-forms A,) for which the flatness condition is natural.
The constituents A, of the superstring sigma model Lagrangian indeed satisfy a zero-curvature of their
own. We will now investigate this promising feature.

Lax pair

In the last example we found the Lax representation of the equations of motion for the principal chiral
model action by writing the Lax connections in terms of conserved one-form currents. For our superstrings
in AdSs x S° with Lagrangian density (1.33)

Tr 4 o
L =—3 {7 BS‘UT(A&Q)A/%Q)) + ke Bstr(AS)A(;))},

the one-forms A, are not quite conserved themselves but do satisfy a zero-curvature condition. To find a
Lax representation of the string equations of motion, one should analogously ansatz a Z4-graded one-form

Lo = A + 04D + taye 56 AP + 1340 + 0,45 (1.85)

and then try to determine the parameters ¢; by imposing zero-curvature (1.76). The projections of
the zero-curvature condition are found and separately set to zero in A.6 to obtain the following require-

ments:
@) =0 — ty=1, E-0B=1, f30s—=1,

02—t 02—t
=0 = 362 = —r, 452 = K, (1.86)
18y — U3 Uy — 0103

Some algebra shows that these requirements imply x? = 1, which is not a big ask of the model whose
local fermionic symmetry begs for the condition. In other words, k-symmetry is required (by the Lax
representation parameters ¢;) for our original Lax pair ansatz (1.85) to describe the string described by
the Lagrangian density (1.33). This is not quite the statement that integrability requires x-symmetry. In
principle, if one found a Lax pair such that it can satisfy the zero-curvature condition by being a one-form
but without 2 = 1, then integrability would hold independently of the symmetry. To date, no such Lax
pair has been found.

Integrability and symmetries

We will see that certain gauge transformations leave the flatness of any Lax connections unchanged. Since
the Lagrangian (and hence the physics) benefits from x-symmetry, it should follow that integrability of
the model is preserved under such transformations (1.43). In particular, the transformed Lax connections
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1.3 Integrability of classical superstrings

L!, = Lo + 6.Ly are shown to be gauge transformations, thus preserving flatness and integrability.

As shown in A.7, the Lax zero-curvature condition (1.63) is invariant under the gauge transformation

Lo = L', = hLoh™t + 9,00~ (1.87)

In fact, if h = exp A € G is a group element for A € ¢, then the transformation is equivalently defined by
0Ly = [La, A] — OaA. (1.88)

The above variation is explicitly shown to preserve flatness after (A.67). Under k-symmetry transforma-
tions with € = €(!) for example, the change in the ansatz Green-Schwarz Lax connections (1.85) is found
in A.7 to be

SeLo = [Los A] — O — 20503205[ AP D] 4 tye (2[A$)’ﬂ, M7 4 5455/153)) (1.89)

for A = 3¢ € su(2,2|4). This is of the form §¢Lo = [La, A] — 0o A — co. If one can show that the extra
term ¢, vanishes, i.e.

Ca = 20al3e44 [A(—Z)’ﬁ7 6(1)] —l2ap (2 [As})ﬁv 6(1)] +56'7/65A((52)> =0, (1'9())
T \_\g_/
Iy I

then that would equate the s-symmetry transformation d.L, to the typical gauge transformation (1.89)
for A = £3¢() € su(2,2/4). That is precisely what is shown in A.7 by proving that the two terms containing
I o and I, separately vanish. In particular, thanks to the proportionality of two projected components
(1.51), the term I , can be reduced to

1 2) (2 1),8
ha=3 str(A%) AG ), w07, (1.91)

(1)

where .’ comes from the ansatz (1.52). Some careful manipulation shows an important relation between
I o and the Virasoro constraints (1.41) for x = +1:

str(40 AT ) =0 = str(APAD)) - %%mfw str(APAP) = o. (1.92)

The second term I, can be heavily simplified using arguments pertaining to the bosonic structure of
su(2,2|4) such that

1
s (215 + 007 4P) = 20 (2 str(X[s7?, A09]) A9 4 wug2>) . (1.93)

Looking at the expression (1.56) for 6.4y*? when ¢ = 0, the above vanishes.

In summary, k = +£1 was shown to imply (1.56) in 1.2 and the equivalence (1.92) in A.7. In turn,
the former implies the I, term vanishes while the latter tells us I1 o, = 0. Thus, xk-symmetry directly
implies the extra term ¢, drops out of the variation L, of the Lax connections (as long as the Virasoro
constraints are satsfied), such that only a gauge transformation is leftover and the flatness is preserved.
This is pictorially summarised in Figure 4.
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215 + 5770 A) =0

/ Integrability preserved under

Integrability =ty =1

\ k-symmetry transformations

I, =0 <= Virasoro

Figure 4. A schema highlighting the relationship between the symmetries and integrability of the Green-
Schwarz superstring on AdSs x S°, which is a consequence of the zero-curvature of L, given in (1.85).

We note that diffeomorphisms of the worldsheet coordinates ¢® of the type o — o = & + f induce a
change in the Lax pairs given by the expression derived in A.7:

0Ly = fﬁaﬁLa + L,Baafﬁ = [Lﬁfﬁ7 Lo] + 804(L5fﬁ)' (1'94)

This is a gauge transformation of the form we saw before ([Ly,A] — 4A) with parameter A = —Lﬂfﬁ,
and is also the Lie derivative of L, along the vector field f. We have two integrability-preserving diffeo-
morphism freedoms 6%. These are not equivalent to the reparametrisation invariance of ¢%, but rather
reflect the fact that integrability is highly dependent on the choice of coordinates (unlike the physics of
the system). It is a weaker statement than actual Lagrangian invariance.

To conclude this section on integrability, we return to the gauge transformation (1.87). If we set
h =g € PSU(2,2|4) and introduce the dual current A = gAg~!' = —dgg~! with homogeneous components
A®) € () then the new Lax connection takes the form

L/a = 40;1((10) + 41;1((12) + EQ’yaﬁeﬁpAg) + fglet(xl) + 5414&3) — 1[104
= ) AD + 0\ AD + thyyape® AP + 0 A + 0, AY
The shifted Lax parameters ¢, can be expressed in terms of a spectral parameter while fulfilling (1.86) as

(1—2%)?
222 7

1 1
lth=——, th=2-1, lj=-—1 (1.95)

(=0, /0 =
0 ) 1 % P

We can expand the new connection in around w = 1 — z to leading order in w and we get

2 - - ~
Lo="2La+0W?),  Lo=1se A0 + (A0 - AD). (1.96)

This expansion was confirmed using Mathematica (see Figure 7). Because we can vary w at will, the
zero-curvature of Ly (w) should be fulfilled at each order in w. This implies

OaLls —05La =0 = 0a(cPLg) = 0. (1.97)
This is no surprise since, recalling the expression (1.35) for A%,
TePL, = gAYg~! = J°@ (1.98)

where J% is the conserved Noether current (1.42) associated with PSU(2,2|4) transformations.
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1.4 Strings in coset space

1.4 Strings in coset space

In this section we will see how to include the spacetime coordinates of AdSs x S° in the Lagrangian, which
so far has featured su(2,2|4) matrices A, with implicit dependence on the worldsheet coordinates.

Coset parametrisation

We first start by embedding the 5 unconstrained coordinates {¢,%'} for i = 1,...,4 of S° into RS by
introducing 6 real coordinates Y4 for A = 1,...,6. Note |y|? = 'y’ is not constant. These Y4 are

v1iy2— y' +iy? V3 iyt = y? +iy?
L [y[?/47 L [y[?/47
) (1.99)
Vs +iYg = 1 -yl /4ei¢
T+ |y /A

The metric induced on S® by this embedding into flat space is easily found (see A.8) by taking the modulus
squared of the above expressions:

1—[y2/4\2 dy'dy’
ds2| .. = dyAdyA| . — <7) dp)? + — YW 1.100
s o = (T ypra) @+ @ e (1.100)

Similarly, the embedding of AdS5 with coordinates {t, 2%} for i = 1,...,4 into RS prescribed by

Zl_f_iZQ:%’ ZS—I—Z'ZZ’L:L?,
1—[z]2/4 1—|2[2/4 1.10)
s 1+|a/4 '
79 4izh = L7 T i
T
and with the signature nyop = diag(—1,1,1,1,1,—1), induces the metric
1+ |2)%/4\2 1 .y
2 _ A 3B Y S 2, L i
d5?| g, = napdZAdZP |, (o = (1_ |z|2/4) (@0 + g (1.102)

If we group the coordinates z* and y* into one z*, for u = 1,...,8, then the AdS5 x S° metric becomes
diagonal:

ds? —~Gu(dt)? + Gyg(de)* + G pdrdat (1.103)

AdSs x 55 —

where it is understood that G, dxtdxt = Z?Zl G.dz'd" + Z?Zl Gyydy'dy® and the Lorentzian signature
AdSs x S° metric entries are

1—|y?/4\2 1 1
Goo= (Trpra) O = TR v TEREAR
(1.104)
We group Gii = G» and G (j14)(i44) = Gyy for i = 1,..4. To get rid of closed timelike curves, we extend
the angle coordinate ¢ to the real line. We can make this extension because nowhere else in the metric

does t appear. In technical terms, this means we are considering the universal cover m .

1+ z|2/4>2

Gt = (1 —|2]2/4
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1 String sigma model

The time has come to put some life into these psu(2,2]|4) matrices. In 1.1 we understood that pro-
jections M = M®?) € ¥ can take the arbitrary form (1.28). We can choose the coefficients of M such

that o ;
1 (284" + ity 0
M= - i . 1.105
2 ( 0 lyz,yz 4 1(15’75) ( 0 )
for i = 1,...,4. The separation of the bosonic upper block, which corresponds to su(2,2) ~ so(4,2) ~ AdSs,
and lower block su(4) ~ s50(6) ~ S is all too natural. The most obvious way to embed this bosonic element

from su(2,2[4) into SU(2,2|4) is to exponentiate it. This leads us to define an embedding g of the coset
space PSU(2,2/4)/(SO(4,1) x SO(5)) D AdSs x 5% into SU(2,2/4) as

g= gf(X)gb(ta b, 'TH)? (1106)

comprised of a fermionic element g; and a bosonic element g of the form
1 [ityd + 2l 0 0 O
fo =P 3 ( 0 gy tiyiyi) I OPXTEP etz o (1.107)

We saw that the left action of a group element G € PSU(2,2|4) on a coset representative g should result
in g'h for another coset representative g’ and a compensating element h € SO(4,1) x SO(5). In the case
of a purely bosonic global transformation G € SU(2,2) x SU(4),

Gg = Gg;G~'Ggp = Gg;G gy . (1.108)

By using the power series representation of the exponential g;, we see

1 1
GgiG™' = G(Is + x + 5;(2 + éxf’) +..)G t=expGxGL. (1.109)
This means the left action of G on g induces the adjoint action of G on fermionic degrees of freedom found
in x. What are the consequences of this property for supersymmetry? Suppose G : x — X + dex = X + €.
To find é.gp, we substitute into (1.108) and g becomes Gg, or

BCH 1 2
efeXgy = eXtetalend+OE) g — pxtoexgl g

Factoring out the eXT¢ from the left, for a ‘small’ compensating element b ~ 1g + Jh this means

1 1
gp + 5[@)(]95 ~ (gp + 9c8p) (1s + 0h) =~ gp + 0cGp + Go0h = degp = §[€’X]9b — gpoh. (1.110)

A better way to define the bosonic variation, instead of dcgy = gy, — gp is degp = (g, — gb)ggl such that

1[e,x] — gu0bg, (1.111)

deflp = 5

Here, gy = eX* — g, = gpeX %% which is better than the definition in [1] as the change J.gy is now a
bosonic psu(2,2|4) element, so that it is comparable to d.x. Note there is now an adjoint transformation
on the element h = ¢%. Either way we see the consequence of the linear transformation of fermions:
since x is expressible in terms of bosonic degrees of freedom, it must be periodic in o due to the intrinisc
periodicity of the AdSs x S5 spacetime coordinates. (Going all the way around the worldsheet should
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1.4 Strings in coset space

bring you back to the same point in target space.) In particular, we can quantify this with an integer
winding number m for the S° equator angle such that

o(mr) — ¢(—mr) = 2wm.
Another valid parametrisation of the coset representative g is of the form

g =A(t,9)a(x)e(X) (1.112)

where we split the bosonic degrees of freedom from g, into

it’y5 0 > <1zi’yi 0 >
o= (V70 A (1113

for i = 1,....,4. We can go between (1.106) and (1.112) by the change x — A(t,#)xA(t,¢)~!. Note that
now the periodic boundary conditions of y with respect to o have changed. If we express the fermions as
(1.107), then the redefinition entails

00 =279
since A~1(t,¢) = A(—t, —¢). Therefore the new boundary condition is

@/(T(T) _ ei7rm*y5e%(d)(—ﬂr)—t(—m‘))’ys@ — eiﬂmfyS@/(_TrT).

Using (7°)? = 14, it is not difficult to show eimm™’ = (—=1)™ such that fermions have even or odd periodicity
depending on the parity of the winding number m. With this expression for X, it is also possible to
construct an alternative embedding g(X) = ,/% such that the bilinear form str[(ggldgb)Q] reduces to
the spacetime metric (1.103). This particular choice for g(X) is expressed

(X) = Tt e 0
o= 0 L (14 + Lyini]

14+y2/4

: (1.114)

as derived in A.8. This will be the parameterisation we use moving forward into Chapter 2.

Linearly realised bosonic symmetries

With (1.112), time and angle shifts can be generated by left action of a group element G = A(dt, §¢) since

G- g = A6t 60)A(t, 9)a(x)9(X) = A(t + 6t, ¢ + 66)a(x)8(X). (1.115)

Under such global transformations, the ordering of g(X) and g(x) after the time and angle components
implies both the bosonic and fermionic degrees of freedom are neutrally charged, i.e. don’t change. This
makes the choice particularly suitable to the light-cone gauge where we will be redefining (¢, ¢) — (x4, 2_).
However, this additive property of A(t,$) only holds because G' and A are both expressed in terms of ~°.
As we discussed previously, other bosonic elements are possible and in particular feature the generators
%Wﬁj}. The question becomes, what is the most general bosonic group element G which acts in such
an additive way on y and X also? In other words, we are after the maximal bosonic subgroup with acts
linearly on the latter.
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1 String sigma model

It makes sense to consider the centraliser C in the bosonic subalgebra su(2,2) @ su(4) of the u(1)
isometry group corresponding to ¢ and ¢ shifts. Plainly put, this centraliser is made up of the bosonic
elements of su(2,2|4) which commute with v°. It can be expressed as

C =s50(4) ®so(4) =su(2) ®su(2) ®su(2) & su(2) (1.116)

where the first copy of so(4) is part of s0(4,2) ~ su(2,2) and the second copy belongs to s0(6) ~ su(4).
Both copies are spanned by generators i[y"ﬁj ] with 4,7 = 1,...,4 and these clearly commute with iy°
which spans the time and angle bosonic subspace. Therefore if G € expC then GA(t, )G~ = A(t, ¢). The
action of the centraliser on the full coset element is exactly what we are after, namely

G-g=A(t¢) Gag(x)G1-GgX)G™-G (1.117)

where the last element is recognised as a compensating element in SO(4) x SO(4) C SO(4,1) x SO(5). To
ensure that the transformation of g(X) in (1.114) is linear, we should check whether conjugating it by G
preserves the matrix structure in terms of 4*. To this end, we want to calculate [y%,+7]y*. If i = j, then
we get 0 identically. Suppose i # j, then there are two cases,

itk#]: I = = 7 = A (A Y) - A () = A DA
iFk=3: [ AN = AR =Ty = 4R iy =2y
Thus i[’yiﬁj] commutes with 7* if i # k # j, whereas their product gives %vi if i # k = j. Either way,

the form of g(X) is preserved and we confirm that elements of the centraliser act on fermions and bosons

as
G:x—GxG™l,  G:X-GXG™Y, (1.118)

inducing a linear transformation of the dynamical degrees of freedom z* and .
To conclude Chapter 1, we will now introduce an extremely important notation which boils down to

keeping track of the four copies of su(2) comprising the centraliser (1.116). Any element G € expC =
SU(2)* can be written as

gt 0 0 0
g 0 0
= 1.11
=10 0 g o (1.119)
0 0 0 g

with the 2 x 2 blocks g; representing an independent copy of SU(2). Using the definition of 4* (1.11), a
straightforward calculation yields

0 Z 0 0
zZt o 0 o0
X = 1.12
0 O 0 iY ( 0)
0 o0 iYt o
with blocks
1 . B . 1 . B .
g L(m—la —atizn 7 y — = (¥ Y11y (1.121)
2 \21+1izg 2z3+1izn 2 \y1+1y2 Y3 +1ys
satisfying
ZV=ezte™t,  Yi=evlel, e=io?= <_01 é) : (1.122)
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1.4 Strings in coset space

The fermionic element y can be taken to be of the xk-symmetry gauge-fixed form”

0 00 7
0 o0l]6F o

Y = a0 o (1.123)
-t 0] 0 0

Therefore, the coset degrees of freedom transform under the centraliser as

0 1 017295 " 0 0
_ Zigr 0 0 0
X o GXGgl= |94 % :
- 0 0 0 igsvor! |
0 0 igaVigs? 0
0 0 0 gingy '
_ 0 0 92077t 0
GG ™! = 3
X = GX 0 g30ga—1 0 0
—gan'e;’ 0 0 0

But because any SU(2) element g; satisfies the condition gi_1 = egle !, taking for example the block Y,
the quantity Ye actually transforms under G as

Ve — g3V, e = gsYegh. (1.124)
If we associate the indices a = 1,2 with the fundamental representation of the g3 copy of SU(2) and

a = 1,2 with that of the g4 copy of SU(2), we can think of this as a matrix with components

Yli Y12

Ve= (V%) = <Y21 Y2?> (1.125)

since it transforms as

Yaa — gabybb(gt)ba — gabgabybi)' (1126)

The subscript on g; is suppressed since the index style gives it away. We can easily find the components
of Y = (Ye¢)e in this two-inder notation:

Y12 _Yli _Y2i Yll
— T — eyite —
Y= <Y22 _Y2i = Yi=eVe= _YQQ Y12 . (1127)
In particular, if we view the skew-symmetric matrix e as a Levi-Civita symbol then we can define a
prescription for lowering the indices of the components such that

Yoo = (V)| = e, VPP (1.128)

with convention €12 = 5 = 1. For example, if we weanted to find the conjugate of Yli, we could compare
the daggered components of Y with those of YT in (1.128) and read off (Y'!)T = Y22, Using the lowering
prescription instead,

(Yli)T — Yl' _ 61[,616Ybi) — YZQ,

"This form of x explicitly obeys the odd su(2,2/4) reality condition (1.8).
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1 String sigma model

we get the same result. The same story holds with indices o = 3,4 corresponding to g1 and & = 3,4
corresponding to go for the AdSs degrees of freedom. In terms of two-index components, we thus have

0 0 z3 _z3| o 0 0 0
0 0 z% -z 0 0 0 0
Z4% 730 0 0 0 0 0
44 34
< _ z¥% 7z 0 0 0 0 | 0 .o , (1.129)
0 0 0 0 0 0 iy —iyi
0 0 0 0 0 0 iYy?2 —iy%
0 0 0 0 —iy?2t iyt o 0
0 0 0 0 | —ivy?® iy'2 o 0
and similarly for fermions,
0 0 0 0 0 R
0 0 0 0 0 0 72
t t
0 0 0 0 0! ) 0) i 0 0
0 0 0 0 | -6, —6l. 0 0
X = 13 23 (1.130)
0 0 6% -6 0 0o 0 0
0 0 6 -6 0 0o 0 0
—nl, i, 00 0 0 0 0
t t
nyoomy 0 0 0 0 0 0
In the case of fermions the lowering corresponds in a different way to taking the conjugate:
ol = (0°%)", i, = ()", (1.131)

Now we understand how dynamical bosonic and fermionic degrees of freedom act under the bosonic
symmetry group C, which we can write as

expC = SU(2)q x SU(2)q x SU(2)q x SU(2)a. (1.132)

In Chapter 2 we will see how to write the Lagrangian in terms of the two-index fields (Z®,Y ¢ g pod)
such that the bosonic symmetry group of the model will be made manifest.
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Chapter 2
Light-cone quantisation

Having accustomed ourselves with the language of superstrings in the coset (1.1), we will now take a step
back. To quantise the AdS5 x S® superstring, we will need to have an expression for the Hamiltonian of the
Green-Schwarz action. Ideas taken from bosonic light-cone quantisation will prove useful in this endeavour.

Usually, one would quantise a model by translating the Lagrangian’s generalised coordinates to Hamil-
tonian phase space whereupon the fields are promoted to operators. This is referred to as canonical
quantisation as it involves promoting the Poisson bracket relating fields to their canonically conjugate
momenta to matrix commutators. If the action presents constraints, one should also reduce the phase
space to the physical phase space before making this quantum leap. We will see how to write the action of
a string in AdSs x S° (first bosonic, then super-) in first-order form such that the canonical pairings and
the model’s constraints are made explicit by what is, and what isn’t, the kinetic term in the Lagrangian.
Working in light-cone coordinates, we will be invited to fix the light-cone gauge which will ultimately
reveal the classical Hamiltonian density we are seeking.

In the decompactification limit, when the circumference of the cylindrical worldsheet goes to infinity,
the model becomes a two-dimensional quantum field theory on the plane. We will see that the leading
term in the large tension limit corresponds to free theory of 8 bosons and 8 fermions all having the same
mass. It turns out that the S-matrix factorises into two-particle scattering for the next-to-leading order
theory, which would indicate that the quantised model is integrable.

2.1 How to fix a Lagrangian

At the end of this section, we will end up with a Lagrangian ready for decompactification. The Lagrangian
will be fixed in two ways; in the light-cone and k-symmetry gauges. Our first step will be to introduce
the first-order formalism in light-cone coordinates through the bosonic case in order to prepare us for the
superstring. We will then move forward with a special light-cone gauge known as the uniform light-cone
gauge, which will be followed by fixing the x-symmetry gauge and discussing the resulting gauge-fixed
Lagrangian.
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2 Light-cone quantisation

Bosonic first-order formalism

We start with the Green-Schwarz action with the fermions turned off,
T 2 aBa vMn vN
S = —5 d“o Y 8aX 65X GMN; (21)

which described bosonic strings in 1.4 with target space metric G;n and coordinates XM ¢ {t, ¢, 2*},
and wordlsheet components «, 8 = 7,0. We will use the shorthand 8, XM = XM 9, XM = X'M_ The
conjugate momenta can be found as usual, remembering that v*% = %% so that

0Z

8X7M - _TWTﬂaﬂXNGMN = —T’}/TTXM — T’}/TUX;W. (22)

PMm =

We can rewrite the action in first-order form,

1
//d? <pMXM + —C + 57 TT@) : (2.3)

with the following constraints determined in B.1:
Cy = puX™, Cy = pyp™ + T2 X, XM (2.4)

As derived in B.1, in flat space these constraints satisfy the equal-7 Poisson algebra

{C1(0),C1(0")}pB. = 05C1(0)8(0 — o) + 2C1 ()06 (0 — '),

{C1(0), C2(d")}p. = 0-Ca(0)d(0 — 0”) +202(0)056(0 — '), (2.5)
{Cy(0),C1(c")}pB. = 05,C2(0)6(0 — 0') + 2C2(0)dyd(0 — o),

{Ca(0), Ca(0")}pB. = 4T%0,C1(0)d(0 — 0') + 8T*C1(0)s6(0 — o).

In order to proceed with decompactification, which will ultimately facilitate quantisation, we want to
express the action explicitly in light-cone coordinates parameterised by the constant a:

t=x4 —ax_, zy =agp+ (1 —a)t, (2.6)
p=z4+(1—a)x_, r_=¢—t. .
Equating the scalar p;t +p¢<;5 with py4&_ + p_dy, we get
pe=(1—a)p- —ps, p+ = (1 —a)pg — apy, @7
Py = p+ +ap—, P— = Py + Dt-

The transversal coordinates z# and their conjugate momenta p, are unchanged. The invariance of the
action under shfits of ¢ and ¢ has not changed, which leads to the conserved quantities

—T7r —TTr
E = —/ do py, J = —/ do pg (2.8)
—TTr —TTr

which evidently correspond to the target space energy and angular momentum of the string. We can now
relate these quantities to the light-cone momenta

—r —7r
P+_/ do py = J+a(E—J), P__/ dop_=J+E. (2.9)

—7TTr —7r
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2.1 How to fix a Lagrangian

A preference for the specific value of a depends on the context, but for us it will eventually be useful to
set a = 1/2. Letting the parameter be free for now, in these coordinates the first term in the action is

pu XM =pri_ +p_iy +puat. (2.10)

Meanwhile the constraints take the form

Ci1 =pya’ +p_da/y + pua™, (2.11)
Co =3 |Gp) = G|+ 2pp- [aGr) + (1= )Gt | 2 263} - (1 - )G
+ Tza:/f [G¢¢ — Gtt] + 2T2:v/+x/_ [aGtt +(1- a)G¢¢] (2.12)

+ T2 [(1 — a)2G¢¢ — CLQGtt] +2H,
as derived in B.1. Here we defined a ‘Hamiltonian’ related to the transversal degrees of freedom (z#,p#),
1 L 1 2 I, v

In string theory, actions such as the Green-Schwarz action display two reparametrisation invariances
in the coordinates (7,0). This provides two gauge freedoms which we will now exploit [6]. We fix the
light-cone gauge by imposing the following conditions:

Ty :T—l—amg, py =1 (2.14)
r

This is the uniform light-cone gauge because the total spacetime light-cone momentum Py = [ do py =
27r is uniformly distributed around the string and is equal to its circumference. The integer m is the
winding number from the periodicity condition at the equator,

o(mr) — ¢(—mr) = 2rm. (2.15)

This same periodicity is the reason for the normalisation factor 1/r which is required by the consistency

ry(mr) — a2y (=7r) = a(p(rr) — ¢(=77)).
Wanting to find the form of the action (2.3) in this gauge, we can rewrite the constraints as
Cy=a2"_+ %amp_ + pux'™, (2.16)
Co =[Gy = G| +2p- [aGy) + (1= )G + 02 [a2G) = (1 - )Gy
+ T2 <iam>2 [G¢¢ — Gtt] + 272 (iam) z [aGtt +(1- a)G¢¢] (2.17)
+ T2 [(1 - a)?Gyp — a*Gu] +2H,..
Solving the first constraint C1, i.e. setting C7 = 0, we find 2/ = —%amp_ — pua’*, which implies that the

second constraint Co can be solved to obtain a quadratic in p_ = p_(p,, z#,2'*). Substituting (2.10) and
solving the constraints, the light-cone gauge action becomes

S = // dPo (pudt + pyi— +p_iy) = // dPo (puat + i +p_).
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2 Light-cone quantisation

Since &_ = %:c_ is a total derivative, it can be omitted from the action while preserving the correct
physics. We are left with

S = // d?o (puit —H) (2.18)
where H = —p_(py, z#,2'") is the light-cone Hamiltonian density since it’s the only term not containing

a time derivative. Note that in flat space (when Gy = Ggy = G,u = 1) and when a = 1/2, the above
constraint C (2.17) becomes

1
Co=2p_ + TQ;mx’_ +2H, =0.

We will soon set m = 0, resulting in H; = —p_, which motivates the label of this transversal term.
Physically m = 0 corresponds to the string not making it all the way around the equator of S°.
In particular, now that we have identified H = —p_, the level-matching condition
r
/ dox' =x_(mr) —z_(—nr) = ¢(nr) — ¢(—7r)— = 2rm (2.19)
—T7r

for physical states® can give us insight into the total worldsheet momentum which we will denote pys.
This condition follows from (2.15) and X™(r,¢ + 27r) = XM (7,5) for non-angle coordinates ¢ and x*.
Combining this level-matching condition with C; = 0 we get

wr 1 1 T
0= / do (—amp —pwc"‘) = —amH — do pya™ = 2rm (2.20)
T T

—7Tr T

where H = [ do H is the light-cone Hamiltonian of the superstring.” The second term is nothing but the
total worldsheet momentum since it is the integral over the stress-energy tensor component 777. So we
in fact have shown that the worldsheet momentum for physical states satisfies

T
Pws = —/ do pua™ =m (27? - %H) . (2.21)
T
This component of the stress energy tensor corresponds to translations along o, a symmetry of the action.
Thus the worldsheet momentum pys is a conserved charge and, in particular, for m = 0 it is vanishing.
Remembering that our original goal was to find a classical Hamiltonian to quantise, we update the light-
cone gauge for m = 0:
Ty =T, P+ = 1. (222)

The Virasoro constraint C, which is a quadratic in p_, still depends on 2/ = —p,2’* but takes the simpler
form

Co = |G = G| +2p- [aGy) + (1 - )G + 02 [a2G) — (1 - )Gy
+ TQI/E [(1 — a)2G¢¢ — azGtt] +2H .

8 These physical states must obey periodicity of the coordinates to be a closed string. If the level-matching is not observed,
then we would be dealing with an open string whose endpoints are held at a fixed distance.

Tt is worth noting that this can be expressed as H = JdoH = E — J, which means if one can solve the equation for
P, (E,J) and substitute it into the bounds :E%P+, there will be a new equation for the target space energy E which may be
then be related to the CFT scaling dimension.

— 33 —



2.1 How to fix a Lagrangian

Solving this quadratic for the light-cone Hamiltonian density —p_ is straightfoward and we get

— )2 ) 2 — )2 2 2.
Y \/GttG¢¢ [14—2 ((1 a) G¢¢ a Gtt) H, +T ((1 a) G¢¢ a Gtt) x_] - aGy + (1 7G)G¢¢

(1 - CL)2G¢¢ — azGtt (1 — a)2G¢¢ — azGtt'
(2.23)
This highly complicated, non-polynomial expression for #H(z*,p,, x) must have come as quite the disap-
pointment to string theorists nearly two decades ago. We cannot simply promote fields to operators, even
for the bosonic restriction which is not very inspiring. In the supersymmetric case, we will have to resort
to a compromise as we will see.

Green-Schwarz first-order formalism

In analogy with the first-order form of the purely bosonic string (2.3), we can introduce an auxiliary field
denoted 7T € psu(2,2[4), such that the bosonic part of the Green-Schwarz superstring (1.33) changes to

1

L= —str |[TAP + _ma® -
ryTT 2T,7T7'

<7r2 + TQASE)AS?)” = %naaﬁ str(45)45). (2.24)
The equation of motion for 7T is given by

_ 0z _ @ 7,0 1
0= T — str [AT + ,YTTA‘T TﬂyTTﬂ-

which has an obvious solution, reminiscent of the bosonic momenta py; in (2.2),
T =Ty7"AD + 7y AP, (2.25)

Substituting this expression for 7T into the Lagrangian minus the Wess-Zumino term, we recover in B.1
the Green-Schwarz Lagrangian kinetic term, as expected. Looking at (2.24), the constraints C; and Cy of
the superstring first-order formalism are

Ci=— str(ﬂ'A((f)) =0,
(2.26)
Ch = str(T2 + 7243 AP)) = 0,

which we will solve after imposing light-cone gauge and fixing x-symmetry. In general, the equation of
motion shows that 7T can be viewed as an element of ¢2) without affecting the projections of A onto
other graded subspaces. We can consequently write it as a generic element of ¥(2),

T=TT® = %7T+E+ + iw,z, n %7@2# 1 TTils, (2.27)

which is a linear combination of 8 x 8 matrices of the form

¥ 0 -3 0 r (A0 aw (00
Y= Y = PO ¥ = . 2.2
* (o 2)’ <0 2)’ <0 0)° 0 iy (228)

These matrices are made of the Dirac matrices v¥ for k = 1,...,4 and 4 = %, and span the diagonal
(bosonic) subspace of su(2,2/4). Notice that ¥, has a factor of i in front of 4*; this is to ensure that
Yark € su(2,2[4). The coefficient 7Ty is extraneous to the Lagrangian as it always features alongside a
str (Ag)) = 0. The auxiliary field components 7T+ and 7T, will be related to the momenta p+ and p, by
comparing the Lagrangian density to its light-cone gauge-fixed equivalent.
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2 Light-cone quantisation

Kappa symmetry gauge fixing

As proven in 1.2, our Green-Schwarz Lagrangian enjoys a gauge freedom as a result of k-symmetry, thanks
to which we could gauge away 16 of the 32 fermionic entries in the matrix representation of the embedding
element x € su(2,2]4). We saw that y could be expressed as (1.123) for 2x 2 matrices a and b, The following
identities follow from — or can be considered a definition of — k-symmetry gauge fixing:

X2y =-S1x, xX-=X_x (2:29)

Explicit calculations in B.1 prove these identites for y of the above form. Because g(x)~! = g(—x), we
can Taylor expand the latter and apply the above identity for each copy of x in the polynomials to get

g(x) 'S =Sia(x) = g0 "Sra(x) = Sya(x)%

90075 =3 g0 = 80 'S-g(0) =2, (2:30)

We will now find the explicit form of our current A = —g~'dg where g = A(t, ¢)g(x)g(X) with the coset
parametrisation given by

Mo —ewy (5 0) a0 =T a0 —x VIR (2.31)

Because bosonic elements (1.113) are expressed in terms of 4% for i = 1,...,4, we have
g(X)7'81 = g(-X)2x = B1g(X). (2.32)

One can revert back to the exponential definition of g(x) in (1.107) with the substitution y — sinh y since
sinh x + /1 + sinh? y = sinh y + cosh x = exp x. In B.1 the even and odd components of A are derived to
be
. 1 .
Ao = —g(X)! [; (dm+ + (5 — a)d:v_> (14 2x3%) + id:v_E_ + B} g(X) — g(X) " tdg(X),
) (2.33)
Ay = —g(X)71 [i <dx+ + (5 - a)dx) YixvVI+x2+ F} 9(X).

For simplicity, we decomposed g(x) '9ag(x) = Ba + F, into bosonic and fermionic parts

Ba = V1+X20aV1+X2 = x0aX,  Fa =1+ x20ax — x0aV/1+x% (2.34)

One can show that these are respectively even and odd by rewriting the expressions as commutators of one
or two odd elements. The formulae (2.33) were obtained using the identities (2.30) which depended on the
commutation relations of x and ¥.. The latter relied on certain fermionic degrees of freedom in y being
gauged away by the k-symmetry transformation as discussed in 1.2. In tandem with this x-symmetry
gauge fixing, we make the natural choice a = 1/2 such that the above odd current no longer depends on
the coordinate z_:

A= —g(X)"! [;zm F20)dry + 8 dr + B} a(X) — g(X) " Ldg(X),
(2.35)
Ao = —g(X)! [iz“m/n F2drs + F} g(X).

One gauge down, one more to go.
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2.1 How to fix a Lagrangian

Light-cone gauge fixing

We should aim to write £ in the form (2.18) in order to read off the Hamiltonian density H which will
be required at the quantisation step in 2.2. To proceed, we need to identify to which graded subspaces
each term in A, belongs such that we can evaluate the Lagrangian explicitly and identify the canonical
momenta p+ and the worldsheet momentum pys. Because the component A is proportional to the
identity, we can replace A with the whole even component A, and the Lagrangian will be unchanged.
Explicitly, sending A®) — A©) 4+ A?2) adds the terms str(A(O)A(O)) =0 and str(A(z)A(o)) x str(A(Q)) =0.
Making this choice and substituting the even current into (2.24), we can write

T
L =pyi_+p_iy — str(TAL + 5556“5148)14(63)), (2.36)
where we can read off the conjugate momentum p, and the factor p_:
i i
Py = Zstr(7rz,g(X)2), p_= §str(7TE+g(X)(]1 +2x%)g(X)). (2.37)

The part of the even current which depends only on the transversal degrees of freedom

¢ = —g(X) 7 [VI+2dy/T+ 7 = xd] 9(X) - 9(X) ' dg(X) (2:38)

is isolated for brevity. To obtain these expressions (2.37), we used (2.32) to carry the matrices X4
past g(X)~!. The factor p_ is bold because it is boldly pretending to be p_, which contains a second
term proportional to #4 coming from the odd current (2.35) through the Wess-Zumino term. However,
specifically because we eliminated the z_ dependence from the odd part of A, by choosing a = 1/2, the
light-cone momentum p; is no pretender so we can go ahead and impose the uniform light-cone gauge

o
= - =1. 2.39
T4 T+m27“’ D+ ( )

Gauge-fixed Lagrangian

In preparation for the decompactification limit when the circumference of the worldsheet (or in other
words the length of the string) goes to infinity, we must set m = 0 to keep the light-cone Hamiltonian
H = FE — J finite. As Py — oo, the angular momentum J grows rapidly which necessitates that the string
move fast in AdS5 x S° such that F is comparably large. Importantly, setting m = 0 results in 2, = 7 as
we saw for the bosonic string. Having fixed the k-symmetry gauge such that the Lagrangian is given by
(2.36), before imposing the light-cone gauge we start with

L =pyi_+p_ iy — str(TAL,) + Lz (2.40)

Both py and &4 will ultimately be set to 1. The #_ term can consequently be dropped as it is a total
time derivative. The constraints C; and Cs offer a way to solve for 7T+ and 7T, in terms of the worldsheet
momenta p4 and p,. Looking at C1, it features A, which means it is also possible to isolate ' which
is crucial to impose the level-matching condition. Once we have {77} in terms of {p}, we can simplify p_
and the Wess-Zumino term to determine the Hamiltonian density % = —p_.10 In the appendix B.3 the
details of the derivation of Zur explicitly reproduce — and agree with — the results found in [8].

10The equality H = —p_ still holds in the case of this superstring because the only term in (2.40) without a time
derivative, i.e. the only term which is not a kinetic term, is the one associated to &4+ = 1.
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2 Light-cone quantisation

To begin, the definition (2.37) of p4 is used in B.3 to show that the momentum py reduces to

1 1
P+ = 7T+G+ — §7T_G_ for G:t = 5(\/ Gtt + G¢¢) (241)

This expression is then used in B.3 to find
. i . 1
—str(TTAL,) = puit — P+ Str(3exx) + 50, Ty str([3, 2] Br) (2.42)

provided p, are equal to
pi =G T, Pavi =/ Gyy T ayi. (2.43)

Replacing 9; with d, in (2.42) one can solve C1 = 0 (B.29) yielding

1 i 1
i oy puz™ — 5P+ Str(E+Xaox) + 591,7'('# str([El,, E#]Bg) , (2.44)
+

Integrating 2’ over o and setting the result to zero is the level-matching condition we saw was necessary
for physical states. Note we see already that in flat space, when G4 = G, = 1 and G_ = 0, the momenta
satisfy py = T4 and p, = 7,,. The factor g, comes from the decomposition (B.24)

0X) =g+Is +9-T + g% 0(X)?=Gils +G-T + G5y,
and explicit forms of the coefficients are presented in (B.25) and (B.26). C = 0 is solved in B.3 to find
G4 (T, + T A%)

T -
Pi [P — G Gy(TT% + T2A%)

(2.45)

where A% = str(AéQ)AgQ)) is found in B.3 to be (B.36). Let us catch our breath and see where the
Lagrangian stands. Taking stock of each term other than py4_ — 0,

p_iy = (— 22;1?4_ + G?*G_fa‘ﬁ_ - %p+ str(x2) (2.46)

+ %mgy str([Sy, B3 (9 5y — g,z,))m, (2.47)

- str(’]TAéjT) = puit — %p.,. str(S4xx) + %g,,’ﬂ'u str([Sy, ) Br ), (2.48)
Lz = %(Gi —G)str([iFr — 2450 x V1 + 2KFSET) (2.49)

T
— k5 GuGy str (S, [iFy — iS4 xV 1+ xS KE K.
The gauge-fixed Lagrangian is thus the sum of the above with x4 = 7 and p; = 1, and can be written
Zor = Lkin —H (2.50)

where the kinetic part below houses all the transversal + derivatives z/:
1 ) 1
Lkin = putt — B str(2+xx) + igyﬂ'“ str([E,,, EM]BT) (2.5)
T T '
+ mi(cﬂ+ — G?)str(FKFS'C) — i GGy str(S, P2, KFSE).

— 37 —



2.2 Perturbative Quantisation

The gauge-fixed light-cone Hamiltonian density can be read off as whatever multiplies 4 in .Z:
H=-p-=-p_+Hwz (2.52)

and the aforementioned Wess-Zumino contribution is

T
Hwy = m§(G3 — G2)str(Sox V1 + 2KES KT

(2.53)
L GGy str(,5 1+ 2%, KFste!
—/ﬁ; M ,,str( IR + x“ X KF,; )
Of course the explicit expressions for 7T_, G4, Gy, ... in terms of the fields should be substituted in to
find H(py, z*, z'*). Still the functional form of the Hamiltonian is too complicated to quantise so we must
resort to another approach. Before moving on, let us remind ourselves that the level matching condition
would require the integral over the worldsheet circumference of (2.44) to vanish.

2.2 Perturbative Quantisation

Now we will try our hand at simplifying the gauge-fixed model a little bit more before actually quantising
it. In particular, we will consider string states with infinite light-cone momentum Py such the worldsheet
gets ‘decompactified’ into a plane. This will allow us to obtain a two-dimensional quantum field theory
which will be much more accessible and give us insight into the scattering properties of the model.

Decompactification
We just gauge fixed the action such that it takes the form
[e’e] +P+/2
S = / dr/ do ZGF. (2.54)
—0o0 —Py/2

In the limit as Py — oo, the circumference of the worldsheet becomes so large that the geometry becomes
that of a plane. A specific one-field solution of this limit is presented in B.2 whereby the solution is a
soliton with dispersion relation

E—J =2T|sin 2. (2.55)

This specific solution is of interest as it resembles the plane-wave dispersion which characterises a similar,
integrable model. Our interest, however, will lie in the properties of the AdS5 x S® superstring under this
decompactification and the large tension regime, T > 1.

The idea is to resort to rescaling o — oT such that the worldsheet circumference becomes 27rT while
we inversely rescale (x*,pu, x) = (", pu, x)/ VT. As a result, the action takes the form

. 1 1

whereby the Lagrangian can be calculated at each order in the fields (or equivalently the inverse tension).
This calculation is rather involved but was done in [1] from [8].
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2 Light-cone quantisation
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Figure 5. A string excitation in the decompactification limit

Another harmonic oscillator?

The next step is to rewrite the leading order quadratic Lagrangian in the two-index notation described at
the end of 1.4. A derivation of some of the terms below is presented in B.4 to give the reader a taste of
the calculation. The result is

Ly = PaaV " + Paa 2% + 1]

«

S0 i01.0% — Hy (2.57)

with quadratic Hamiltonian

1 . . | . . .
HQ — zpaz'zpaa + Yadyaa + Ya{dy/aa + ZPadPaa + ZadZaa + Z;dZ/aa ( )
2.58
: K : K : < K . K .
+ nlmnoza + 5,’704@77;(_1 _ §nTaan’oi[d + aldeaa + 50(1049;@ _ igfaaegd_

Looking at the kinetic term of the Lagrangian, one can read off the canonical pairs such that

[Y“a(T, o), P (T, o) = 155635(0 — o)1, [ZO‘O"(T, o), PﬁB(T’ o) = 15562‘5(0 — o)1, (2.59)

{6°(r,0).6] ,(7.0")} = 6036(0 — o), {n(7.0). 0l (r,0")} = 53675(0 — o). (2.60)

The spacetime in which this field theory lives is the worldsheet, and there are 8 of bosons and 8 fermions
because a, a,« and ¢ each can take two values. In the decompactification limit the worldsheet coordinate
o is unbounded. We are thus dealing with a quantum field theory in R! which describes 8 bosons and
8 fermions all with unit mass so that w, = /1 + p?. To analyse this quantum field theory, we will choose
the following mode decomposition. For bosons, we use the standard harmonic oscillator ladder formalism:

V(7 o) = j%?;@ (aad(,r’p)eipa n eabedl}azb(7_7p)e—ipa) ’

Poa(r,0) = \;l%i\/@ (aia(T, P)eP7 — eqpealh(r, p)eiPO) 7 .
74 (1,0) = \j% 2\/1@ (a‘m(ﬂ p)eipa + eaﬁedf}a;B(T, p)e_ip”> , .
Pou(T,0) = / \;l%i\/@ (aLd(T, p)e P7 — eagedgaﬁg(v-,p)eip") )
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2.2 Perturbative Quantisation

For fermions, we must also include functions f, h, which play the 1-dimensional role of spinors:

ac dp e_iﬂ—/4 ac ipo tac —ipo
0 (r,0) = 7\/%7\@ (fpa (1,p)e'P? 4+ hy a'*(1,p)e ) ,
p
. (2.62)
. dp e~ i7/4 . . . .
naa (7-7 0) - vV ;)TF 6‘ ey (fp a™® (7—7 p)elpa + h’p aTaa (Tv p)e—lpU) '
p

The specific form of the fermionic wavefunctions can be specified when it comes time to diagonalise
the Hamiltonian, in order to easily find the spectrum of this theory. One can derive the commutation
relations for the ladder operators themselves by inverting the Fourier transforms above. For real f, and
hp, a calculation in B.5 shows

[ (7, p), al (7,p)] = 65686 (p — P)1, (2.63)
ac T Ny — (fz ™ h2_ ) a s !
{a**(p), abB(p )} = wp (ffpfpp_ h,pphp)z o5 555(]9 )1 (2.64)

It will prove useful to group the two-index notation since, in terms of creation and annihilation operators
a™M (7 p) and aJ][WM(T, p), the Lagrangian is found in B.5 to be of the diagonal form

Ly = / dp (ial, ;0" () — wypal . () () (2.65)

provided the fermionic wavefunctions satisfy

1+
fo=1/ 2%’, hp:%:>f§:1+h§:wp—h§, (2.66)

and uppercase Latin indices take values M =1,...,4 and M =1, ...,4. We can take x = 1 for definiteness.
The lowercase Latin indices a,a corresponding to S° are taken to be even, while the lowercase Greek

indices a, & corresponding to AdSs are odd (i.e. |a] = |a] = 0 while |a| = |&| = 1). In this notation, we
can consider the mixed bracket
[ (7,p), af (rp) b = — ()M ) oM ()| = oY 6Mo - o) (2.67)

such that bosonic operators a,; and a, g satisfy equal-7 commutation relations whereas we get anti-
commutation relations fermionic modes a,4 and aq 4. This form (2.65) of the Lagrangian is not strictly
correct as we should have kept the real form of the non-zero kinetic term. Bringing the term to the present
form involved integrating by parts and using the Heisenberg evolution result

aMM(T,p) = i[Ha, aMM(T,p)] = —iwp aMM(T, ) (2.68)

to find commutation relations between the ladder operators and their 7 derivatives.!! Note that all of
thisfollows from imposing the canonical relations (2.59) and (2.60) with a generic mode decomposition.

1 0One could also point out that substituting a®? (p) into the above formula returns in Lagqs, = 0, a puzzling outcome.
Had we been careful, we would have retained non-zero boundary terms when integrating by parts. These constant shifts of
the Lagrangian, which are equivalent to canonical transformations, would have saved us from this zero.
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2 Light-cone quantisation

We have made our lives much easier with regard to analysing the spectrum of this decompactified
model. This is because we see that the Hamiltonian is that of a standard harmonic oscillator, since

Hy = / dp wyal . (p)aM (p) (2.69)
which has eigenstates in the Q-particle Fock space
{0 =al, g @0l @) al, o 00)I0)}

spanned by creation operators aL M(p) and stemming from a vacuum |0) defined such that any annihilation

operator destroys it, i.e. aMM(p)|0> = 0 for any M, M. Thus the ground state is Hz|0) = Ep|0) = 0 and
the excited states have the usual spectrum

Q
Ha| W) = Ey|¥) = (pri> ). (2.70)

i=1

Figure 6. Scattering of two superstring worldsheet excitations.
The field theory’s total momentum operator P originates from the classical worldsheet momentum

1
P=pws = —7 /da puz™

since the particles’ ‘spacetime’ is the worldsheet. A straightforward calculation in B.5 shows

1 ; T _— . 1 .
P= —T/da (PadY"m + Poa 2" 416 0/ + den’M) = T/dp pal )M (p), (2.71)

which implies the energy eigenstates are also eigenstates of P with eigenvalue

Q
PlW) = Py|¥) = (; Zm) 0). (2.72)
i=1

We now have a different interpretation for the level matching condition: the momenta of any number of
particles must add to zero for an energy eigenstate |¥) corresponding to a physical state on the string.
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2.2 Perturbative Quantisation

The way in which decompactification entered the mix was subtle: we were able to think of o as an
unbounded real number which in turn allowed us to use Fourier transforms to decompose the fields into
specific modes. These modes are found to correspond to harmonic oscillators with a Zs-grading, but what
we have discussed so far is a free theory, Interactions between different species of bosons and fermions are
first found in the quartic Hamiltonian (see [1]) of the perturbative expansion for T' > 1.

Closed sectors

Just as in regular quantum field theory, only certain decay modes are possible because of selection rules.
In the case of our decompactified model, the charges which are to be conserved in a scattering process
are those associated with the SU(2)* transformations (1.132). For example, the Q-particle states spanned
uniquely by creators aJ{ i have maximal charge (Q/2,Q/2) such that they can only scatter between them-
selves. This is because each creation operator is charged under the SU(2), and SU(2),, each giving a
‘spin’ of 1/2. Explicitly, using for example ¢ as the spin projector for SU(2),, we would have

t 1.t
o3 a%a — +%a'11_a ) (2.73)
A9q 32094

A host of other properties of the model follows from this analysis, namely the factoring of the S-matrix
into two-body scattering.

— 492 —



>

Chapter 3
Conclusion

Albeit perturbatively, we have succeeded to some extent in quantising the AdSs x S° superstring. To get to
that point the model had to be simplified using some tricks, namely fixing the light-cone and x-symmetry
gauge in a favourable manner as well as decompactifying the worldsheet cylinder to a plane. This resulted
in a perturbative expansion of the action in which we kept the leading order, quadratic, free Lagrangian
which described 8 massive bosons and 8 massive fermions, all with the same mass. However, the original
goal was to understand the full spectrum of the superstring so that one may relate, for example, the target
space energy of string states to the scaling dimension of operators through AdS/CFT. Naively, the way
to approach full canonical quantisation would involve including the full range of interactions from the
light-cone Hamiltonian density up to higher orders in the fields. Researchers found a way around this.
The review [1] on which this work was based was supposed to preceed another review, Part I1, in which the
plane would be ‘recompactified’ to a cylinder in preparation for use of the thermodynamic Bethe ansatz.
In the end, it is rather surprising that by analysing the scattering of vibrational modes of a single string
on its worldsheet, one can retrieve the full spectrum and begin to use the AdS/CFT duality.
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Appendix A
Chapter 1

A.1 Extended spinor algebras

We aim to show that adding n’® = %vi to the five gamma matrices preserves the relations (1.13) by
computing [n%, n*!]. First, we note that

1 1 1
= 2h% =7 (" = @01 - ) = (vF' - M) (A1)
Clearly if either I =6 or k = 6, we get a result of the form
) _ 1. . ) . _ 4
[HZG’nkl] l:6 _6l61[7177k] _ _516nzk7 [nzﬁ,nkl] k’:6 5k6nzl‘ (AQ)
If however k # 6 and [ # 6, we get
6 Ky _ Y i k.l skl LV IO S TR S TAN S A S A S
[0, "] = 2y "y = 671 = 2 [y " = AT+ Sy
4 4 4 4
) o i . . i .
_ l,yknzl + ank’}/l _ §’Yk (’Yz’}/l _ 5zl]1) + 5 (,yz,yk _ 5zk]1) ’Yl

i , A , A i A , A , A
— 5 (’Yk’YZ’Yl +’}’Z’7k’)/l) . 5zlnk6 - 6zknl6 — 5 (2(52k’)/l o ’YZ’Yk’Yl +7’7k7l) _ 67,lnk6 _ 6zk’nl6
— _5ilnk6 + 5iknl6'

Adding all these cases, which do not contribute whenever their conditions are not met, we find (1.14)
which extends the so(5) spinor relations (1.13) to so(6).

Similarly, let us define ¥ = i7® and look at the extended generators of so(4, 1) satisfying (1.15)

I . 1 .
m¥ = Z[ LA, m? = 571, i,j=0,..,4. (A.3)
The addition of m® should preserve the relations [m*, m*] for i,j... = 0,...,5. As above we start with
4 _ 1. . . . _ .
[777,15, mkl] l:5 (SlE)Z[,y'L7 ’)/k] _ 5l5m1k7 [ng), mkl] k:5 _5k5m7,l. (A4)

If however k£ # 5 and [ # 5, we get

) 1. . 1. . 1 - 1. .
[mZS’mkl] — 7[7z’7k,yl _ (Skl]l] — [’Ylv’Yle] — *’Yk[')/l,"}/l] + [ l’,yk‘],_yl
4 4 4 4
. . 1 . . 1 . 4
— ,yk:mzl + mlk,yl — 5,yk (,Yz,yl _ 5'Ll]1) + 5 (,yz,yk _ 52k]1) ’)/l
1 . . 4 . 1 . , . . .
— 5 (,yk:,yz,yl +’YZ’Yk’Yl) _ 5zlmk5 _ 5zkml5 — 5 (26zk,yl _ ’Yl’}/k’)/l +’Yz’)/k’}/l) _ 5zlmk5 _ 5zk‘ml5
— _6ilmk'5 + 5ikml5.
All that is left to do is recognise that if 7%® = —§%, then the relations are satisfied by the generators m®%

for i,5 =0,...,5 and become those of s0(4,2) instead.
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A Chapter1

A.2 Endowingsu(2,2|4) with a Z,-grading

Let us first discuss the continuous subgroup of Aut(sl(4|4)). We want to show that the continuous
1 1

dilatation transformations &,(M) (1.18) can be written as 6,(M) = e2 L "PMe~2 TP We start with by

noticing Y2 = 1g and so e¥ becomes

oo

1 1 1 = 1
Y
=1 T+ -1 —T+...= 1 — 0
R R T Z(2n)! 8+Z(2n+1)!
. ely 0
= cosh(1)1g + sinh(1)Y = o 11, ) (A.5)
1y
(&

By raising both sides of the equation to the power of %lnp =1np!/2, we get
2l 0 “2ly 0
1 2 1 2
e§Tlnp: p2lq ; — e—iTlnp: P 4 ) 7 (A6)
0 p 2y 0 p2ly

which clearly shows (1.18). This transformation is an automorphism on su(2,2[4) if it preserves the
fermionic reality condition n = —#T%. To this end, the transformation parameter must satisfy |p|2 = 1. It
is clear that §_1 (M) = TMY~! and we note §_1 (M) = M if M is even whereas §_1 (M) = —M if M is odd.

Next we want to show that the fourth-order automorphism Q (M) restricts to the subalgebra su(2,2(4) C
s[(4]4). To do this, we should show that Q(M)T = —HQ(M)H~1. Since [K, %] = [4°,727*] = 0, we know
that [K, H] = 0 which will be useful since we can use the reality condition (1.6) for M € su(2,2[4).
However, the issue is that (Mst)T # (MT)5t in general. In particular, for M even

(i 2) = mr-ane=(3 1)

-0 1) = oereonr- (5 )

while for M odd

-1
One can find Q(M)T using the identities

Ki=kt=Kkt=-k, Y=rl=vt=7  H =g '=#"=H,
(A7)

(K, H| = [K,T] = [T, H] =0,
and the fact 6_1(M) =+M = YMY~! for M even (+) or odd (—). We get (Mt)T = T (MT)tT~1 s0
QM)T = KT(MHTET = —(rstyTe!
= —KYMH*r—IK= = — KT (—HMH)sty—1c—t
= KYHMSH Y=kt = —(TH)(-KMst K (rH) !
= —(YH)QM)(YH) "
For M even, so M = M©) 4+ M(2) the hypercharge T can be ignored in the above expression since

d_1(M) = M. This means Q(M) restricts to the bosonic subalgebra of su(2,2[4). To see that it also
restricts to the entire subalgebra, we should look at M (F)f, In fact, if we use the properties

QX(M) = (M®)St =6_| (M) = TMYT = Q3(M) = YQ(M)T,
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A.2 Endowing su(2, 2|4) with a Z4-grading

we get the strong result for any £ =0,1,2,3

MOt = LM E ()P 4R ()T + (~DRR3 ()]
= [FEMET i (Ceman 0T 4 i (ra)T 3% ran T
= 3 _—HMHfl +iF (~HQ3(M)HY) +i%F (~HYMYH ) + 1% (-HQ(M)H*l)}
_ i —HMH ™ + i (~HO (M) HY) +i2% (—HO2HY) +3% (—Ho(nH )|
~HM® gL

Because any M € sl[(4]|4) can be uniquely decomposed by the Z4-grading (1.25), and since we just showed
each component M(¥) is independently an element of (p)su(2, 2|4), it must be that the subalgebra su(2, 2|4)
can itself be endowed with the Z4-grading Q(M). From now on, we relabel ¢ = su(2,2|4) and the Zy-
graded decomposition of ¢ is given with respect to the automorphism Q(M) by (1.25).

If we start with a matrix M of the generic form (1.5), then the explicit components M (k) can be found
by computing Q¥ (M) and evaluating (1.25). Using the usual identities,

(M) = — K 0\ (mt -\ (K71 0\ _ [(-KmK~! Kntx-!
- 0 KJ\ot nt 0 K1) \-KoKk-! —Knlk-1)’

9 _(m -0 30 _ (~Em!K—! —KntK~!
2an =500 (" ). evan—raant - (AT TR

we find the decomposition M (¥) (1.26). To find explicit expressions for the even components M ©), M@
in terms of bosonic generators (1.16), we notice that the matrix K = —y?~* was constructed such that

(K (V)'K _1) = V274 (11) T2 = 4 2ydyiyty? = 42(26% — yint)nyie?

9512402 _ 2412 — _ogiad (2512 _ 4in2)2
— i (g 1 51242) 1 (v')*
or equivalently K (7*)!K~! =~ In turn this means
Ky 1K = K[(7) (K = K6 KL KO K = =[]

Looking at the expressions for M (k) (1.26), it is apparent that one can span @(0) by exprebsing the even
‘upper block’ elements m in terms of the so(4,1) C su(2,2) generators { [V, 7], jl['y v } fors,5=1,...,4
and the ‘lower block’ elements n in terms of the so(5) generators { [V, 7] } fori,j =1,...,5. Slmllarly,
the elements m of the projection ¥ (2) can be spanned by the remaining bosonic generators {%vi, %75} €
su(2,2) for i = 1,...,4 and the elements n by {%71} € su(4) for i = 1,...,5. Explicit matrices are given in
(1.27) and (1.28) respectively.

TOnly 4% and 4" are imaginary such that (v')* = —4" for i = 2,4 and (y")* = ~* otherwise.

— 46 —



A Chapter1

A.3 Green-Schwarz equations of motion

To begin a long derivation of the equations of motion, we will show that for My, Ms € su(2,2|4)
str(QF (M) M) = str (M QY7 (My)), k=1,2,3. (A.8)
By definition Q(M) = —KXM**K~!. Using the supertrace identities
str(AB) = str(BA), str(A) = str(A) (A9)
and the fact that Q4(M) = M,

str(QF (M) M) = str(QF(M1)Q(Ma)) = str(K(QF 1 (M) KHC(Q (M)t 1)
= str(QF 1 (M) QT (M) = .. = str(QF R (M) R (M)
— StI‘(Qk(Ml)MQ) = Str(M1Q4ik(M2)). (AlO)

Armed with (A.10), we can show that s‘cr(A(J)A(4 J)) = str(Aq A(4 J)) = str(A(])Aﬁ) when j =1,2,3.

For convenience, define Qk(Aa) QF . Then according to (1.31), and remembering that i* = 150177 = i%7,
str(AQAg‘*j)) _ - str [ Aq +1¥Q0 +1702 +1703)(Ag +1°4-D0, +i24-D02 + 1(4—3')&2?5)]
— st { A + 13700 +12902 +V03) (A5 + 17905 +17203 + rmg)}
— st [ (Aa +1¥0q +1%02 + V03)(Ag + 04 +1902 + 13J'Qg)]
=1 [str(AmAsg)—i—lJ str(AaQg) +i% str(A4aQ3) +Y str(A.0Q3) (A.11)
+i% str(QaAg)+ str(Qafg) +i7 str(QQF) +1%7 str(2.03)
H2 str (05 A g) +H%7 str(Q4 Q) + str(Q3.Q3) +17 str(Q203)
+if str (03 Ag) +177 str(Q304) +1%7 str(Q3,Q3) +str(Q303)].
The terms with the same color are related by (A.10) so that on one hand
str(A) 4577 = Z[str(AaAg)+HY str(QaAg)+i% str(23A)+7 str(234p)] (A.12)
= str [Z(Aa +i%Q, +1702 +1702) Ag)
= str(A(aj)AB),
and on the other hand, again using i% =177 =i%i—7 =i,
4 YV I, YT ) o N .
str( (J)A(ﬁ )) 6 [ 1<A A3)+13(4 7) str(AaQﬁ)+1‘( t=3) stl'(Al(.QZ),,) +i(4=9) str(A@Q%)} (A.13)
1
= str [da 7 (Ag + 170705 +i247D0F +14-D0f)]
_ (4=7)
= str(dady 7).
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In particular this means that

str(45)45)) = str(4,45)) = str(48) 4p), (A.14)
str(ADAD) = str(4aAT)) = str(45) 4g), (A.15)

which further implies, using the product rule and the cyclicity of the supertrace,

(5str( ( ) (3)) = str 5AaA(63)) + str(A&l)(SAB)
= str(54aA5) +64548)), (A.16)

(
(
(
(

= str(640 A5 +64545)). (A.17)

2 2 2 2
bstr(AS) AD)) = str(540AG)) + str(45)545)

Substituting (A.16) and (A.17) into §.Z gives'?
T7 o 2) ,(2 a 1) ,(3
0.8 = —5[ Pastr(AP AL)) + nePastr(al A |
=-3 [ Pstr(34aA]) + 34540 + P str (64045 +64540)
it T a 2 3 !
L Dot [199(04045) + 64040 + ke (54445 — 64047

a4~ ) )

= 0% == —str(0AaAY), (A.18)

1 1

For a matrix g € SU(2,2|4), the variation dg~* or the derivative 0,9~ " can be found by looking at

=d(gg™!) =dgg ' +gog”t = dg 't =—g logg " (A.19)
In particular Gag’1 = Aagfl. The variation §dA, is then
0Aq = 6(—g '0a0) = —0g ' 0ag — g ' Dady
= (970997 1)00g — 919009 = —g 1ogAa — g 10adg. (A.20)
Substituting into (A.18),
0.2 = str(g7'0gAaA” + g 10ad(g)A%). (A.21)

The second term can be rewritten as (assuming cyclicity due to its presence in a supertrace)

0100 (0g)AY = 9, (6= 6GATY) — Apg 1ogA® — g~ 1 0gaAY
= —g 16gA“ A, — g~ 16go. A"

where we drop the total derivative as the variation dg vanishes at the bounds of integration in 65. Finally
we can write the variation in the Lagrangian as

0.2 = —str [g7109(0a A — [Aa, AY])], (A.22)

2Here 6. is shorthand for the the variation inside the action integral.
TUsing v*# =~ of —

Ao and e = —eP“ to change indices in the second terms.
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which holds for arbitrary variations dg. If we view the term in the supertrace as an element of su(2,2/4),
this must mean that

Str(0aA” — [Aa, A%]) =0 = 0oAY — [An, A%] = p - 1, (A.23)

where p is determined by taking the supertrace of both sides. If instead the LHS was an element of
psu(2,2|4), then it would be equal to 0 modulo il in psu(2,2|4), i.e.

This single equation (A.24) can be projected onto different Z4-components. Let us first rewrite

A A%) = [Aq, TP AD)) — (A4, Tgeaﬁ (A5 — Ay
=Ty P(AD + 4D + 4D + 4D, 4D _ngaﬁ[ AD 1+ AD 4 4D 4 4D, (A — 4B
= {10, AP+ 1AL AP AL, AP+ 140, A1)

— 12 L1A0), 4D + (A0, 4D + (4D, 4P+ (40, 4]

B B B
— 14D, 4D~ (40, AP - (4D, AP - (4D, a1},

The red term vanishes due to the symmetry of v*? under exchange of indices and the blue terms cancel
due to the asymmetry of €*#. We can now decompose each term in (A.24) where the colours indicate
whether the term belongs to g 42 or ¢3).

Dol = Ty 00 A T 2P0, AL ~T 20 0, A, (A.25)
(Ao, A% = Ty {148 AP 4[4, AP 4, A}
—75e?{149), AP 1148, 4114, 4G
(A0, AP -(40), 4D 14D, AP}, (4.26)

Projecting the equations of motion (A.24) onto #(2) gives

7P0a A5 —1°P1A60, AP+ 5P (148, 450 - 148, 47)) =0, (A.27)

In order to proceed, we use the zero-curvature condition for A (1.32) (recast in the form of (1.76)) to find
gaﬁaaA(Bl) — 60(,3{[14((10)’ A(ﬁl)] + [A((Q?)’A(Bs)]}?

99645 = P {[a0), AP+ (a0, 4PN},

which tell us the #(1:3) projections are, respectively,

1 P1AD, AP + kP A, A = 0, (A.28)
2P [aD, AD)) — keoB1aD), AP = 0. (A.29)
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We next find the equations of motion for the worldsheet metric v*? by finding §5/6v*?. First, we
calculate 6v*8 = § (ho‘ﬁ V—h) = V=hSh*B + h*B5\/—h. A standard computation yields

ovV—h=9§ fdet( 5) (5det
¢ \/—det ab’

— _;&trln(hzxﬁ) = 1 etrin(h aﬁ)étrln(hag)

2v—h C2V—h
_h V—-h _
= 57 o (hag) = 5= 0 [(hag) '3(hap)]
— VT = SV by = — oV Rha8h = Moo (A-30)

Substituting 6v*8 into 6.2 (varying only v*% in (1.33)) we find
T (2) 4@ T 4@ 4@ 5 (2) 4@
0L = —5{57%3 str(Aq Ay )} = —5[ —héhP str(Aq Aj )+ 5haﬁhp str(Ay” Ag )}
T 2) (2 1 2) ,(2
— 5 V=hoh? st (AL AT) = eV =hhe str(AfD 4§ ))}
T 2) (2 1 2) (2
= —5\/—7h(5ha6 [str(A&)A(ﬁ )) — ifyaﬂfyp& str(Aé )AES ))}
The Virasoro constraints (1.41) are finally found by imposing §5/6n% = 0.

To show the Noether current J® = gA®g~! (associated with the global PSU(2,2|4) symmetry of the
Lagrangian) is conserved, we use (A.24) by going to psu(2,2[4) such that

OaJ® = 0agA®g ™" + g0aA“g ™" + gA%0g ™!
= —g(—g 10agA%g 1) + 90a A% + gAY (—g 1 Dagg )
= —gAuAg ! + g0aA g + gAY Aag T = g(0aAY — [Aa, AY))g ! (A.31)

which manifestly vanishes according to the equations of motion when working in psu(2,2/4).

A.4 Kappasymmetry transformation

Here we derive the x-symmetry transformation 6% of the Green-Schwarz Lagrangian
T
Z = D) [VQB Stl"(Ag)A(;)) + ke®P str(AS)A(BS))]

Under the transformation (1.43) where Aék) — Aék) + 5€Aék),

@ @

_%g — ~B gty [(A((f) + 554&2))(14/(32) + 5EA(52))] + ke str [(A((ll) + 554&1))(14/(33) + 5514(53))]

+ 677 str (A(()?)A(;)). (A.32)

Our job is now to evaluate (1) and (2), add them to the 67*8 term, subtract —2.%/T and finally get §..%.
Let us start by using the transformations of A (1.45) to find

@Z,yaﬁstr [( (2)+5s ())( (2)+5€ (2))]
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— 7P st { (AP + (AL, ] 4 (4D, Oy AT + 14T, D]+ [4F), O}

_ ,Yaﬁ str {A((XQ)A(;) + At(x2) [Ag)’ 6(1)] 4 Ag) [A(ﬂ3)76(3)] 4 [A&l)’ 6(1)]A(ﬂ2) + [A&3),6(3)]Ag) + 0(62)}.

Dropping sub-leading O(e?) contributions, and using the fact that
9B str { Aff) [ A/(Bi%)’ €3 Ag%)’ €3] Ag)} — 0B gy { Ag) Ag%) (3) _ Ag) (3 Ag%) I A((f) NG Ag) G Ag?») Ag)}
(cyclicity) = v str { ne Ag»)e(s) _ A<53) A3 4 Ag) AP () _ 4B Ag)gs)}
(a6 B) =7 str {aP AP — AP AP ) 4 AP AP ) AD AP )}
— 2y gty {[A,(f), A§33)]e<3>} — 2Bty {[Ag),Ag?)]e@)}, (A.33)
along with an analog for the ¢(!) terms, we get

(1) =~8 str(Ag)A(ﬂZ)) — 29 str {[A?),Ag)]e(3) + [A,(gl)aAg)]e(l)}- (A.34)

In calculating (2), it will be useful to derive the following identity implied by the flatness condition (1.32)

oA = 20,40 — 9540)
1
= 5= (A, AP + 140, AP+ 14D 4D+ 148, 401
= 50‘/3{ [AE?), A(Bl)] + [A((f), A/(Bg)]} and similarly, (A.35)
904G = {0, AP+ 140, 4PN} (A.36)

Once again referring to (1.45), we find
@ = e str [(AD +6:480)(AG) +6.45))]
_ 0B Str{@g) — ™ 4 A0 () 4 [A&2)76(3)]) (Ag,) — 05e®) 4 [Ago)7€(3)] i [Aéz)’eu)])}
— ke®B sty {A&”Aﬁf’) — AP 9ge®) +A&1)[Ag)),e(3)] +A,§1)[A§32),e(1)]
_ 6)066(1)14(;) I [A&O),e(l)]A(;’) n [Ag),e(?,)]A(BS)}

= e str (AL AG)) + ke str {Ag)aae(?ﬂ — AD9ae® 4 4APD[AD) @)1 A A )

+[AY, eD)A8) 1 (a0, @10 1. (A.37)
We can write
AP 0e®) = 94,(AY) ) — 9,4, (A.38)

(and similarly for Ag’)aae(l)) whereby the total derivatives vanish in 6..Z. This leaves

@) — rke®P Str(Ag})A(ﬁg)) = ke str{aaAg)’)e(l) - aaAg)e(?’) + A&l)[A(ﬁo), 6(3)} + A,(J})[A(BQ), e(l)]

+140, 014D + (4D 14Dy,
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We are now ready to use our identity and substitute in (A.35) and (A.36), giving

@ _ ,@50"8 Stl"(A((Xl)A(ﬁg)) — Hgaﬁ str {[A&O),A(Bl)]e(l) + [Aff),A(;')]e(l) — [A((IO),A(;)]E(?’) + [A((ll)’ A(ﬁ2)]6(3)

+ ADAD, @)+ ADAD ) 4 4D, D)AP) 4 (4D, ) 4P

If we expand the commutators, employ cyclicity of the supertrace, and gather like-terms in ¢ and 6(3),
this simplifies greatly to

@ = ke str(45) D) + 26 st {[ASP, AD® 1 (4D AN } (A.39)
Adding our equations (A.34) for (1) and (A.39) for (2) (with a little index manipulation) gives
D+@ =7 str (4P AD) + ve?P str (a8 4Y)
— 9728 gtr {[ Ag>, A1 4 A(ﬁ?’)’ Agz)]ﬁ(:a)} 94698 gty {[ Ag”, AP0 | A}f’), Ag>]€<s>}
_ g @ Astr {Piﬁ[ Af;), AP 4 ped| A<63>’ A&mk(:’))}, (A.40)

where we defined the projectors Piﬁ = %(7“5 + ke®®). The change in the Lagrangian density is

2 2
—Tég.,i” =D +@+ 5y str(A(O?)A(;)) + T.Z
= 57 str (AP AD) — dstx {P;{ﬂ (AY) APD 4 PP A AP } (A.41)
Looking ahead at (1.54), it would be useful to know how expressions of the form Xin can be

manipulated. We will actually prove
PP = ppipd, (A.42)

Expanding the left-hand side will result in terms of the form v*7e%9. This can be rewritten as
YOTER = ey 1P = —e%hyy (1P — 409 1P) = £¥0y1B — B0,
such that

4P§7P£5 = (v £ ke™) (7P £ kePI) = 72VABO L (4P ABONTY 4 g0
= 7y £ i [(£2097F — 22B77) 4 (P10 — LOPT)| — (120710 — 4 201F)
= 70 £ k(y*ePT 4 4P1720) — (P70 — 427400
_ ,yaé,y,ﬁfy + /i(’yaésﬁ7 + 757,}/@5) + Eaééﬁ’y _ 4P:?:45P£’Y_

This identity (A.42) relating projections tells us that, no matter the circumstance,

xX¢...vP=x8 . vg (A.43)

Recalling (1.48) and (1.52), the first half of the second term in (A.41) becomes

str ([A((SBJ A9)76}6(1)> = str (Ag})’aA((;?ZA((XQ,)—HE:)’a + AE:)?aAg’Qng})’aA((f,l
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(2) 4(1),6 4(2) (1), (2) 4(1),6 (1), 4(2)
— AP A AR e AP A DeAR) ),
Notice the identity (A.43) actually equates the second and therm term, cancelling them. We are left with

str <[A((5il~)“ A(_Z)r(;]e(l)) = str (AS:)’(;A(Q) A(Z) KS:)’O( _ A((S?EAS})#SKE:)’O‘A(Q) )

§,— o, — o,—
= str (42400 D" AD7Y) = oA ALY sl 4D

a,—

since the term proportional to the identity in (1.54) vanishes in the supertrace. Similarly,

str <[A(($317AEE)76}6(3)) — éstr(A(Q) A 2) )Str(T[mE)’)’O‘7A(_?’)’5])_

0,4+ o+

Putting the two halves of the second term together, the change in the Lagrangian becomes (1.55). To de-
termine what variation in the worldsheet metric does a local fermionic transformation leave the Lagrangian

invariant, i.e. what d.v*? would kill §..%, we need to factor out str (Ag)A(B?)). Using
PP =Pl and PP, =P
the terms involving str (AgiAg)i) can be manipulated to get

str(a2AQ ) (107 AP 1) = ser(af2 4 (PP P P9, 4004))
= str(ALz)Al(,Q)) tr<P+M<p+Vp[,€(l),p7A(l),CD

(AP AD) e (2, a0,
effectively removing the ‘4’ or ‘-’ in the prefactors. Factoring out str (A,(XZ)AE;)) gives (1.55).

A.5 Monodromy matrix evolution
We want to compute 9,T'(z) where T'(z) is given by (1.64). It will be useful to introduce the notation

a
T(z,a,b) = éxp / do Lo(r,0,2),  T(z,2m,0)=T(z). (A.44)
b

Path-ordered exponentials of this type satisfy T(z,a,c) = T(z,a,b)T(z,b,c). In particular, we can break
up any interval [s1, sp] into smaller sub-intervals such that

T(z,8n,51) =T (2,80, $n—1)T (2, $p—1, $n—2) - - T(z, s2, 51). (A.45)

This becomes useful when computing 9,7'(z). Our strategy will be to apply the product rule to (A.45)
and shrink to 0 the sub-interval size As = s —s1 = ... = sp_1 — sp, such that As||Ls|lus < 1. So,

M=

0:T(2,8n,51) = > T(2,8n,5541)0:T (2, Sp+1,55)T (2, 5k, 51)

=
I
—

n
T(z, Sn, sk+1)6TeA8L”T(z, Sk, S1) = Z AT (z,8n,8541)0r Lo T (2, p4+1,51)
k=1

WE

(As small) =~

=
I
—_
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Sn
%/ do T(z,8p,0)07LsT(2,0,1)

S1

by approximating the integral as a Riemann sum. In particular, for s, = 27 and s; = 0 we retrieve

27
0:T(z) = / do T(z,2mw,0)07LsT(z,0,0)
0

2 27 o

:/ do | éx_p/ Lo )87 Lo | é¥p/ Lo)
0 o 0

(1.63) [T — [T — [°

=2 / do[ exp / Lo|(8oLr + [Lr,Ls]) | exp / Lo|. (A.46)
0 o 0

The Leibniz rule for the derivative of an integral states

b(x) b(z)
O / dt f(x,t) f(b(ac),t)b'(x)—f(a(x),t)a'(a:)+/ dt f'(z,t). (A.47)
(z) a(z)
If we identify x ~ o and f(z,t) ~ Ly (7,0, 2) then (A.46) is equal to
2T 2T o
0:-T(z) = | do 9y |( éxp Lo)L-(&xp | Lo)l. A.48
1) = [Cdror[(ém [ 1oL [T L) (A48)

Taking the anti-derivative and evaluating at the bounds yields the evolution equation (1.65) for T'(z)

27 27 27 0
0.1 = (&0 [ Loterrna(ée [ Lo)]-[(&0 [ LoLosna(Ee [ L)
27 0 0 0
=L:(2m,7,2)T(2) — T(2) L+ (0,7, 2) = [L+(0,7, 2), T(2)]
by the effective periodicity o + 27 = ¢ of any function of the worldsheet spatial coordinate.
A.6 Lax pair parameters
The projections of the zero-curvature condition (1.76) for the ansatz (1.85) are
0=2c"%9,Lg — e*P[La, Lg]
= 2% {0000 AY) + 1064 + 12 00 (15, A5)) + 1300 AT + 040045}
_ 0B [eOA(O) + 0 AD 4 70590 AP 4 05AD 10,4
A + 0 AD + g AP + 1340 + 0,40 |
= 220000045 — e {16oAY), 00 AP + [0 4D, 01T + (04D by 4D
H@Wuﬁépz‘l(z)aflz‘lfz)} + [«42%585’)14( e V81 e AP 4 2[5314&1),5414&3)}}
B
1604 L2758 AP + (7052 AL 00 AD] + 1648, £345)] + 104480, 04451}

+ 280,00 A7) + 2P 510, (5,457 — 2P { (00 AL), 14T + (4D 00 A7)

S aB) (1) | 0 (1 (1) (0) 2) (3)
+ 2: (;;@,J,’f:“f{/(mf\)_(;w N+ (63457 00 A + [0 A 04 4]
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5p 4(2) 5 4(3) (3) (2) (3) s, 4(2)
+V2’7<1(5:(/)4‘/) . 14“;) J + V l"lr\) -(11l 3 J -+ ,( IAlr\)' s €27 3/15/” 4‘1‘/ J}

+2:90,0045) — 8100 AD 4 AD) + 104 AL 04T + 10140, 1345

2 1 1 2 1 2

7052 AL 1450 + 16540, A7) + (548, g e AP}
@D+ @D+ @)+ @)

Starting with =0, we find

= 290000045 — 2 {6 AY), 00 AP + [ AD 1 AD ) + (04D byt 4D
+ [52%555’)1‘122),5114(32)] + [lovase® AD), bryp,e AP + 2[5314&1),5414&3)]}
0= 2:P400, AT — =L B1AD, A0+ 14D, AP + 110375, (A7), 4P
+ 02700 (A, AT+ Brass s, (A, AP 4 26541480, AT}
0= 2:P10e AY) — P {eg A, AD 1+ 31AD, 4D + 20304140, AS’)}}
— 0106%8 5, [AD, AD] — 0136 ,56%P AT AT — BePrp 5695, (AT, AT
0L 2:00000,45) — o8 LB, AD) 1 B1AD, AD) + 20040, AP}

— (1o AT AP + 1P AT 4 BP0, (AT, A

0t 260000 A — £ {E% A, AD 4 (83 — B)AD, AP + 2030440, AEE’)]}. (A.49)

To simplify this expression further, we will need to use the projection onto ¢ (0) of the flatness condition
(1.76) for Aq,

0 0 0 2 2 1 3
2:9890,4%) = 8L 140, AQ) + (4D, AP + 2140, AT} (A.50)
Substituting (A.50) into (A.49) we get
= <8L(ty — ALY, AD) + (lo + B~ B)AD, AP+ 2(t0 — 154D, AP} =0 (A1)
which tells us, assuming each commutator vanishes independently!3,
=1, B-6B=1 (30=1. (A.52)

We can assume these commutators vanish independently, since if their prefactors were not always vanish-
ing, we would be imposing an additional constraint which did not follow from the equations of motion.
In addition, the prospect £y = 0 is not valid as it would imply ¢3£4 = 0 which would mean either the ¥(1)

or ) projection of L, is always zero. Moving to =0, we get

= 2:98010,AF) + 2:90057 0, (75, 47) — 2 {1064, 14D) + (1AL, 1A

TUsing the identity £¥~;,e® = .
tSince Wﬁp'yg# = 6/, and we can relabel summation indices p, v — «, 8.
3The connection components A®) are independent of one another.
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+ 1004, 273 AL 4 2105 AD 00 AT + 3480, 34) + (0448 02451}

8
0= 2:%0,0, A5 +200,(v°7 AF)) — e { 260114, AT + 140, 4D + 14, 4D}
— b2 5, [AD), AP — botye P54, 4D (A.53)

0= 2P0, A7) + 200, (4°7 AD)) = 200(e°% 1 + 4P 0)[AD, AT - 2P { 1AL, AP) + 14D, 4PN},
In this case, the projection onto ¥2) of (1.76) is
2:99,4Y) = £ {2@4&9% ADY+ 1P, AD) 4 14D, A(g’)]}. (A.54)
Substituting (A.54) into (A.53) and recalling Iy = 1, we now get

= 200 (1*0A) — 207 (A0), AP - 0L (3 — 1) 4D, APV + (3 - )[AD), AP} = 0 (455)

which agrees with the string equations of motion (1.38) provided the parameters ¢; satisfy

03—y 02—y
L L -k (A.56)
ly o

For ‘;/;17( 1:]‘:“ and the equations will look identical up to exchange of ¢3 <> £4. Starting with

7)) = 20030, A1) — {00 AL 63410 + 11348 04T + [0 AT, 044

+ avase™ A 4 AP) + [0 AD AP + (044D, by AP}
0= 2:2%030,45) — 20 {eoeg AD, AD 4+ 0448, Afjﬁ}
+ 024056 [AD AD) + 30469075, (4D, 4D

0= 2:%130,4%) 2ea5{eoeg[ AD, AV + 010440 A(3)]} + 265470 [45), A, (A.57)

and similarly
= 2:990,0,45) — 229 {tota[ A0, AP + 16540, AN} + 20590140 AP (A58)

The projections onto ¥(1) and @) of the flatness condition for A, are

2:09,A1) = ga5{2[A£?), AP 424D, 4D } (A.59)
2:59,4Y) = e {Q[ASB), AP + 204D, Ag)}}. (A.60)

Substituting (A.59) into (A.57) and (A.60) into (A.58), we obtain

/) = (bt — (14 — 1)) (A5, AP =0, (A.61)
— (tat37™ — (01t3 — £0))[AD, 4] = 0, (A.62)
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Comparing with the string equations (1.39), the parameters ¢; would need to satisfy

Oly — U3 by -0tz _

= Al
laly " lals (4.63)
These requirements are summarised in (1.86). Summing the second row of equations gives us
Bt -0 G+0-2
(i i Sl S S WY S T (A.64)

lo Lo lo

We next multiply the bottom row to give

o _lila—l3ly— il 00— Blsly — Ll + 005 LG+ -G -1
loly lol3 (20304 l3,=1 3 ’

which we further simplify using (A.64), yielding

2 2 2
o 2-83-1_B-1
3 5

K

Comparing with 2 — (3 = 1 (A.52), this immediately tells us that 2 = 1.

A.7 Lax pair transformations

Gauge transformation

Here we will show that the zero-curvature condition of Lax pairs is invariant under gauge transformations
(1.87). Recall 94h~1 = —h=19,hh~! for matrices h. Using this and (1.87), we find by the product rule

Oally = dahLgh™' + hdaLgh™" — hLgh™'0ahh™" + 0adghh™" — Oghh ™' 0ohh™". (A.65)
Being careful with indices, this means that
OalLly — 0gLty, = DahLgh™" 4+ hdaLgh™" — hLgh™'0ahh™" + adghh™" — dghh™ ' 0ohh ™"
— dghLoh™ — hdgLah™" + hLoh™t0ghh™" — 030ahh ™t + dohh™05hh~?
= hLoh™10ghh™' — dghh ™ hLoh ™ + 0ghh ™! -~ dahh™!

+ Oahh ™t oghh ™ — 0ghh™ 0ahh ™" + h(0aLg — OgLa)h ™
L hLah™, 05hh= Y] + [ahh ™, |+ [Oahh™, 05hh ] + [hLoh ™Y, ]
= [hLoh™ ! + dohh ™1, + Qghlfl] =L, Lg]
where we used the fact that [A + B,C] = [A,C] + [B, C] as the commutator is bilinear.

Kappa symmetry transformation

To find how the Lax pair (1.85) described in 1.3 transform under x-symmetry transformations, i.e. to find

5oLy — (zoaeAfS) + 016 AL + loya 5?06, AD) + 135,40 + 445€Ag3>) + ladevapeP ALY

TUsing flatness (1.63) and the fact that h[A, BJh~ = [hAR™', hBh ™| since AB = Ah"'hB.
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we should start by recalling 5 AK) (1.45). If we restrict our discussion to transformations of type e = e,

5.A0) = [A6)
5.AR) = A

(), 5. AN Z [40) (D] _ ge(1)

Wy, 5.A®) Z (4D (D). (A.66)

Substituting these variations into dcL, above, remembering the conditions imposed on ¢; (1.86), and
setting A = l3¢M) | we get
bcLa = [AS) D)+ 01[AD, V] + L5 ALD eV)] 4 45[AD), D] — 1306eD + £4]aD V)
+ lobeyo 5P AP
= (A9 + 0440 A+ 01 [AL), €D + by [AS) D) — 8o + 13[4 W)ty £5[AT) D)
~0103[49 D]+ lat3 1056 A V] = Lat3]705e7 A D)+ B1ALD, D) — BAL), V)
+ laberyaze®P A
= 1A 4 0,4 + 127050 AP + 1340 + 044D, A] — B + G [AD, €D] 1 lyyo e[ A D]
+ 0[5, V) — 0103[48), €V — tyt3[10567P AL, D) — B1AY V] 4 3505672 AT
= (Lo Al = 9ad + (04 — 0163)[A) V] = L3 ]7057 AL V)
+ 1001 — 2) A + £27055P2 A D] 4 09674652 AT
= (Lo, A] = Oa A + ol3k[AD) D] — byt 5[4 D))
+ 025 AY) + oyapeP? A €D 4 13500560 AT
= [Loy A] = Bah + L3k A — 7059 AP D) 4 65[ AW + 5,552 AT €D 4 95705677 AP

We have almost manipulated the expression into a form using Pzﬂ . All we need to see is the relation

/<;A<(12) — ’ya/gsﬁpAE,Q) = /vyauA(Q)’“ — ya/geﬁpAgQ) L /%aaym’awA(z)’“ — va[gsﬁpA,(?)

2
= cap [FG’YBV&VHA(Q)’“ _ A(Z),B] = —cap [,Yﬁts _ ,%65] AES )
= —2€Q5P§5A((52) = —260[/314(_2)”6
which ultimately results in equation (1.89)
0cLa = (Lo A] — BaA — 269l3205[AP7 €D 4 tye o5 (2[,4(;)’5 L] 567“14552)). (A.67)

Now, suppose for some arbitrary one-form ¢, the infinitesimal transformation resulted in
deLa = [Lay A] — 0o\ + cq.

Then, we would get the new Lax connections L!, = Ly + ¢ Lqo. To check the new zero-curvature condition,
let us calculate its ingredients first. Namely,

80(L,/8 — aaLﬁ + [aaLﬁ, A] + [LB, 8aA] — aozaﬂA —|— aacﬁ

TUsing e*Prp5e%f = r°.
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which means
daLy — 0Ly, = dalg — dgLa + [0aLg — gLa, A] + [Lg, daA] — [La, OgA] + dacg — dgca.

We will now find the new [L/,, L/B] and compare with the above expression to see the conditions imposed
on cq such that the zero-curvature of L, is preserved. Ignoring terms quadratic in the infinitesimal
transformation parameter e() (or equivalently A),

(L, L]l = [La, Ll + [Las [Lg, Al] = [La, 9gA] + [La, cg]
+ [[Las Al Lg) + [[La, Al, cg] + O(A?)
— [0\, Lg] — [0aA, c] + O(A?)
+ [ca, Lg] + [ca, [Lg, A]] = [ca, DgA] + [ca, ).

We now use the Jacobi identity!* to write

[Las Ls] = [Las Lg] + ([Las [Lg, All + 1L, Al Lg]) + [Lg, Oa] — [La, 9]

+ [La, cgl + [ca, Lg] + [[La, Al, cg] + [cas [Lg, A]] — [Oal\, cg] — [ca, DgA] + [ca, cg]
+O(A?)

= [La, Lg] + [[La, Lgl, A + [Lg, OaA] = [La; OpA]
+ [La, cgl + [ca, Lg] + [[La, Al, cg] + [cas [Lg, A]] — [0al\, cg] — [ca, DgA] + [ca, cg]
+ O(A?).

Comparing with what we previously found, i.e.
BaLg — 0Ly = daLlg — OgLa + [0als — 8gLa, A + [Lg, daA] — [La, OgA] + Bacg — dgca,
and substituting the old zero-curvature condition (1.63), the new zero-curvature-condition
da Ly — 0Ly, = [Lgy, L)
is satisfied, provided the extra term ¢, obeys the following condition
Oacg — 0gca = [La, cg] + [ca, Lg] + [[La, A, cg] + [ca, [Lg, A]] = [0a A, cg] — [ca, OgA] + [ca, cg].

Obviously if ¢, = 0 then the above is satisfied'®. We will now prove that

Ca = 2al3eqp [A(_2)ﬁa 5(1)] —l2eqp (2 [Ag})ﬂv 6(1)] +56766A((S2)) =0 (A.68)
B B
I I

by reducing I7 o and showing that the two terms vanish separately, hence the transformation is a gauge
transformation of the Lax connection, i.e it preserves flatness. Beginning with /7, we remember that A,
and Ag _ are proportional to each other; when a = 3 they are just equal, but whenever a # 3 they are

related by (1.51). Either way, [Aq,+,Ag 4] = 0. In particular, taking the ¢(0) projection of this equality,

14[A> [B7 OH + [B7 [Cv A” + [C? [A7 B]] =0.
151 tried substituting non-trivial forms of ¢, for example 9, A, but was not able to find one which satisfied the condition.
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we get that [Agci, A/(BkZ_L] =0 for k= 0,1,2,3 since the different grading elements A*) are independent of
one another. All of this to say that [A((j)_, Ag)_] = 0 such that, substituting the expression (1.52) for e,

Io= [A(z) (M) = [A(z) Ag)_ (1,8 (1),/314;2)_]

a,—? a,—?

= 4D (4D DBy (40 D542

A(z) ©) (8 _ 4O JWager W W8 AR 4@

- [A&%{Ag)_, H(j) A

In the last line we used again the fact that the projected components A( )_ and Aé 1

commute them and to cancel the equal and opposite terms. Lastly we recall (1.54) and notice that the

term proportional to the identity will commute with KSE)”B

are proportional to

such that we are left with

I o= 8str( A AD Y, w07, (A.69)

To proceed, we will show that the Virasoro constraints are satisfied if and only if str (Ag)_A/(;)_) =0. It
will be crucial to use the following identities relating e,5 and v,3-

(i) We note that equeg, and (Yagvu — Yaryg,) share the same symmetry under exchange of pairs of
indices (ap) < (Br), and anti-symmetry under exchange of a <» p and 8 < v. So they must be
proportional and, by looking at eroero0 = 1 o dety = —1 for example, we see that we in fact have

Cau€py = _(’Yaﬂ’}//w - ’YocV'Y/Bu) = YarVBu — YaBVpv-

One could also use e®Pe70 = §a7§80 _ 5ad05B7 — (42740 _ ~ad,B7)  Note the overall minus sign
appears because each v*? factor is associated to a different index of £*?. Both dimensions’ sign
appears exactly once in each term, and since dety = —1, an extra minus is needed to keep the
Kronecker delta terms positive when non-zero.

(ii) We use identity (i) to derive & )‘spu = *y)‘a*ypﬁsyaeﬁu = *y)‘o‘*ypﬁ(*yyufyﬁa — YwBYau) = ’yW’yA” — 555ﬁ.

With these two identities (i) and (ii) in mind we calculate the following with cyclicity in p < v,

str(APL AR ) = str(PEAD P_EAR) = PrauP_g, str(AGHHAG)
0

[%tpﬁﬁu — KYap€By — KYBuEap + K Eausgy] str(A(Q)’“A@)’”)
['70&,&7,81/ — KYau€By — KYBrvE€ap + YavVBu — Vaﬁ'hw] str (A(Q)’NA@)’V)

1
0= -YauY8r str(A(2)’“A(2)’”) RCRL str(A(2)’“A(2)’”) — g[’yau%y + VgvEau) Str(A(Q)’”A@)’”)

2
1 1

0= 3 [str(A&z)Ag)) - 5706/37#” str(Al(LZ)A,(}))] — g[’yausﬁy + ’ygysau] Str(A(2)’“A(2)’”)
1 K v

0= i(Vlrasoro) ) [Va;ﬁﬁu + ngsau] str(A(Q)’“A(Q)’ )

FPPA) = O‘pgﬁ)‘ (Vlrasoro) 8= apeBA g[’yauqay—f-%;ﬁau] StI‘(A(Z)nUfA(Q)aV)
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0= ’ya’DEBA2(VH'aSOI“O)a5 - = [5” w‘e/gy + 5,/)‘5%] str(A(2)’“A(2)’”)
o yo‘psﬂAi(Virasoro)aﬁ — g[— 2555,),‘ + VAPVH,,] str(A(Q)’“A@)’”)
AL K 2.0 42N LA 2),1 4(2),
0=~eh i(Vlrasoro)ag + §[str(A( )P A2) ) — 37 Py StI‘(A( )k A~ )V)]
0= o‘pgﬁ)‘ (Vlrasoro)aﬁ + - (Vlrasoro))‘p ;'yo‘p [eﬂ)‘ + /vyﬂ”} (Virasoro),g.
This proves equivalence with the Virasoro constraints:
2) 42 2) 4(2 1 2) 4(2
str(A((l’)_Ag’)i) =0 <~ str(A& )Ag )) — 5%‘57W str(Al(L )AZ(, )) =0. (A.70)
Thus, I1 o = 0 and we only need to show Ig + 56755A((52) = 0. Looking at

15 = (A2, W) = (AP AQ) DF 4 DIAD ) (A1)

we use (A.43) which helps simplify 1§ down to
g = [AS:)’aaAg),HSE)’B i ngl):ﬁAg) | = [A(l),ﬁ A(Q) H(l),a i ﬁ(l)’aA(z) ) ]
iAEi)_[A(j)’ﬂ,ngl)’a] {A(l)yﬁ "l (1),ex ) [A(l)ﬁ o+ [A(l)ﬁ (1), ]A(Q)

)

_ A(;’)_ [AS_I)”B,/{S_I)’Q] [A(l) B ( ) }A(Q)

Since [AS})”B , ng_l)’a] € 9(2) | this commutator is traceless and can be expressed generically using (1.53) as
W8 (May _ (me%y* 0 L (1.6, (e
[AY77 kY ]z( 0 ngﬁf}/a>+85tr(T[A+ SRy ])]lg,
which clearly implies
15 ={A) <m357a ag >} + L str(ralDB kD) 4@ (A.72)
, 0 n&ba 4 B,

Again, as discussed in 1.1 and used in (1.53), elements A(;)_ can be expressed as

2 s vt 0
A(B7)_ == < 6’0 qi 1> )
6777

which can be used to simplify the anti-commutator

(4® mg’yt 0 - mgPpl {4,749} 0 _ mg”ply 571, 0
& 0 ngly 0 na’qh {77 0 ng’qh 511,

aB, a
mg pﬂi]l4 0 1, 1,
= ’ = —pTlg+ —p57T.
< 0 naﬁqg_ ) oP1LA8 T 5P2

TThe fermionic equations of motion (1.40) are equivalent to [A<1) P A 2>] 0 and thus [AS})’B, Agl] =0
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This means

215 = R 15 + p3 Y - 5 str(X[(D, AL A (A.73)

Because of its original definition as a commutator (A.71), I must be supertraceless which means that
pS = 0 since str(ILg) = str(A) = 0. The first term will not contribute as we are working modulo i1g in
psu(2,2[4). Finally, the last term will cancel with the 6ey®? (1.56) in (A.68):

1
€ap <2I26 + 557@514((;2)) = €ap <QStr(T[KS})»B’AS})yé])Ag?Z n 56766/1((52)) —o.

Diffeomorphisms

To show diffeomorphisms ¢® — 0% = 6% + f%(0, 7) induce a gauge transformation of the Lax connections,
we first calculate L, (&) in two different ways. On one hand, a one-form transforms as

- doP oGP + f8 afP 59

= La(0) + Lg(0) 35765, + O(f?) = La(a) + (Lgda fP)(a) + O(f?).

On the other hand, using the Taylor expansion of Ly (o — f) in f® around f = 0, and substituting what
we just found above,

9 - 2
5rLa)(@)+ 00
OoP

La(o) - fﬁwap [La + LgdafP + O(f2)] (@) + O(f?)

= La(0) = (17650,La) (@) + O(f?) = La(o) = (f°05La) (o) + O(?).

La(8) = La(o — £) = La(o) — f7(

Equating the two expressions for Ly (&) up to linear order in f®, we get
Lo = La(0) — La(0) = f295La + Lda fP. (A.74)

Using the zero-curvature condition for L, we find (1.94).

- 1lg[z_] :=0; (* Lax parameters x)
1,[z_] := (1-272)"2/2/2"2;
1,[z_] :=-(z"2-1/2"2) /2/x;
130z_] :=z-1;
1,[z_]1:=1/2z-1;
F[z_] :=1p[2] @p + 11[2] @ + 15[2] €@, + 13[2] a1 + 14[2] @35 (% Ly %)
f[w_] :=Series[F[1-w], {w, ©, 1}]; (xExpanding L, in z around 1-zx)
flw]
2¢cay)
[—ara;-f ]w+0[w]Z

Figure 7. Expanding the shifted Lax connection to get (1.96).
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A.8 Details of embedding

Given the S° coordinates (1.99), we can find the differentials and their moduli squared:

1\2 2\2 L .
(@Y1 (@2 = B b s { RN + 0] = o P ) 0 )}
3\2 4\2 L. .
@y vty = G (W P00 + 01 - 4+ P P + ot
_ (L=l 42 (y'dy')
@OF + @7 = (13 ) @O+

Their sum gives the induced metric ds?|gs (1.100) since adding the two first equations results in

8 7,0 % 7,,0)\2
(@Y1 @22 @ 4 @y = s - o v @‘1(2)/4)4 — ds?[g5 — (dYP)? + (V)2

For the AdS5 coordinates (1.101), we can simply replace |y|? with —|z|2 to find

Zl 2 22 2 L. .
(212 + (dZ?)? = (Cél ) ;2(74)2) - i(l - |Zl|2/4)4 {12 + (2] + (4= o) (et (et + 2de2) |
23 2 24 2 . .
(dZ3)? + (dz%)? = (Cél ) ;2(74)2) - 411(1 - |Zl|2 syt (PR + G2 = )P+ s}
(14227402 (ztdz")?
@+ @ = () @ - @

This time their sum has signature (ngp) = diag(—1,1,1,1,1,—1) which results in the induced metric
d32|Ad55 (1.102) since with this signature

dz'dz" (2dz")?
(1—l22/4)2 (1 —]22/4)*

dZY)? + (dZ%)? + (dZ3)? + (dzh)? = = ds®| ags. + (dZ0)2 + (dZ°)2.
5

We shall now find the representation of the bosonic element gy, whose bilinear form str[(g, 1dgb)2]
reproduces the metric (1.103) as described in 1.4. First, we introduce the matrices

1+X 1 1
g = A(t, 9)g(X), 9(X) = I-xX - (18 —X)"H (15 + X)) 2. (A.75)
where X is given by (1.113). To compute g(X), we will need to find the inverse of
14— %zifyi 0
~X= o) A.
Ig — X < k 1= Ly (A.76)

We know that (7%)? = 14. Looking at a simpler case, for example

(14 — ay’ = 07?) (14 + ayt + 7?) = 14 — a1y — 21y — ab(x 52 +7277)
=(1—a®—b?)1y,

it becomes clear that the inverse of (A.76) should be

1 1 i1

B — (14 + 52" 0

(1g —X)~1 = [ 17lF/A ’ 1 [ (A.77)
0 1+|y|2/4[]l4+2y7]
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Substituting into (A.75), we easily get (1.114)

—— =14 + §27] 0
o(X) = (,Flz A e f}) . (A.78)

Vitlyl?/4
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Appendix B
Chapter 2

B.1 First-order formalism

Bosonic string

Here we derive (2.4). If we start by summing (2.1) explicitly'®, we find
S = —T//d20 Gun (VTTXMXN + 29T XM XN +7””X’MX’N>
//d c Gun < TTXMXN T’yTUXMX/N Z,YUUX/MX/N>

I’YUUX,MX/N
2

T v T s T . .
_ // 20 G (_QVTTXMXNQWTTXMXN 4 5q/TTXMXN o XM xIN
2.2 T T
( )//d2a Garn (N XM 1 Dy Mg d FTXMXNY here

@]W N

T . . T TONTO J
@MN _ f’yTTXMXN UUX/MX/N Tl T 7T X/]\[X/N + T’? X/]UX/N TW’T(TX \[X/N + T,}T(TX]\[X/\
2 2 ~TT ATT
TO
_ ’7 ( T’}/TTXMX/N T TUX/MX/N)
AT T,YTT

+ 2T2,YTO',YTO'XIMX/N + 2T2,YTT,YTO'XMX/N)

<T2,YTT,YTTXMXN _ TQ,YTT,}/O'O'X/MX/N

TO

y 1
_ ?pMX/N + Sro (pMpN o TQ,YTT,YUUXIMX/N + T2,YTU,YTUX/MX/N)

Y M IN 1 M, N _ m2 aBy /My iNY _ V7 M N 1 M, N | m2IM /N
—Fp X -I-W(p p —Tdet(y*) X" X >_7?p X —Q—W(p p+T°X""X )

Looking at (2.3), we can identify the constraints (2.4). In light cone coordinates (2.6), the first term in

the first-order form action becomes

pur XM = pii + pgd + puit
=[1—-a)p— —p4][#+ —ai_] + [p+ +ap-][#4 + (1 —a)i_] + ppd"
= (1= a)p-d4—a(l —a)p—i——pyiq +apyi— +piiy
+ (1 —a)pyi—+ap_ii+a(l —a)p_i_ + puit
=pyi_ +p_diy +puit,

Similarly, the two constraints turn into

Cy = puX™ = pit’ + pgd’ + pua = pya’ +p_al; +pux'“
Cy = pupyGM* — p; Gtt +p¢G¢¢ + g%’“x”’G — g% 2Gu + et d G¢,¢

:2Hx+@+.

6Note that the spacetime metric Gy is diagonal and thus symmetric.
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We have isolated the term #H | (2.13) involving the transversal degrees of freedom. Computing the two
others terms in Cs, we get

()= —piGy" + 135G, = — (1 —a)p— —p ] G + [p+ + ap-]* G
=—(1- a)2p2_G1;1 +2(1 - a)G;tlp+p_ - Gtt p+ + G(MpJr + 2aG¢¢p+p +a G(M)p_
—p2 [G;; - Gtﬂ +2pip_ [aGdj; — (1 —a)Gy ] +p2 [a2G¢¢{ - (1- a)QG;tl] ,
and

2
= —¢*t?Gy + ¢?*Cy = —¢? [x/jL —ax’_ ] Gu+g [CL‘+ + (1 —a)2’ ] G
ngGttx + 247 aGttx 2 — ?a®Gua’® + g2G¢¢:L' + 247 (1- a)G¢¢x+x +g (1 — a) G¢¢x

= g x+ [Gdnﬁ — Gtt] + 29 :UJra:, [aGtt +(1- a)G¢,¢] + g2x'2 [( - ) Gopgp — aQGtt] )
Putting these three terms together, we retrieve (2.12).
Virasoro algebra
Here we derive the Virasoro Poisson algebra (2.5). The constraints at fixed 7 are
Ci(0) = par(0) e XM (0), Cy = par(0)p™ (0) + T?05 X 31(0)0: XM (o).
Here, X’'(0) will always mean 95X (0). The Poisson bracket satisfies

0xM(0) 9pn (o)

{xM(0),pn(0")}pB. = —0=0Ms%6(0 —")o(0" — 0") = 88 5(a — o),

OXL(a") dpp(a”) (B.1)
{xM(0), XN (0)}pB. = {Pas(0), P (")}, = 0.
For the rest of this appendix the P.B. subscript will be suppressed. This in turn implies
{xM(0),pn(0")} = {par(0), XN (o)} = 6} 056(0 — o), (B.2)

{(X™M(0), XxN(0)} = {Phr(0),pn (")} = 0

since 9y6(0 — 0') = —9y8(0 — 0').17 If we know the key relations

{(X"V(0),C12(")}  and {pn(0), C12(0")},

we can rather easily find the Poisson algebra. Starting with

{X"N(0),C1(")} = {X"N (o), par(c") X" (")}
= par (0 ){X"N(0), XM (o)} + XM (6" {X'N (o), s (')}
= XM (5")68 0,6(0 — o) = B, (X’N (0")5(0 — a’)) :

because of the useful identity

/do’é(a—a aL—MX |—/daX (06")0,6(c — ')

" This can easily be checked by comparing the effect on a test function with some integration by parts.
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= 3U/dJ/X(0/)(5(J —d)y=X'(0) = /do’é(a — ) X'(0),
we can effectively equate §(c — /) X'V (¢') = 6(¢ — 0/) X'N (o) such that
(XN (0),C1(6")} = 0, (X’N (0)d(c — a')> = X"V (0)d(0 — 0") + XN (0)0,0(0 — o).

Similarly, using (B.2)

{pn(0),C1(0")} = 05 (pn(0)d(0 — ")) = piy(0)d(0 — 0”) + pN(0)Ds8(0 — ).

In flat space the metric can be taken out of Poisson brackets, so a similar set of calculations yield

{XN(0),Co(c")} = 20N (0)(0 — &) + 2p™ (0)0y6(0 — o),
{pn(0),Co(0")} = 2T XK (0)0(0 — &) 4+ 2T? X\ (0) Db (0 — o).

As promised, it has now become simple to compute

{C1(0),C1(e)} = pn(0){X"N(0),C1(0)} + XN (0){pn(0), C1 (o)}
=pn(0) XN (0)d(0 — 0") + pn (0) XN (0)050(0 — o)

+ XN (0)p(0)8(0 — ') + XN (0)pn ()b (0 — o)

= 0,C1(0)d(0 — 0') + 201 (0)0s0(0 — ')

and

{C1(0),C2(0")} = pn (o) { XN (0), Co(0”)} + XN (0){pn (), Ca(0)}
= 2pn (o)™ (0)3(0 — o’) + 2pn (0)p™ (0)Ds (0 — o)
+2X"N(0) XK (0)0(0 — ) + 2X™N (0) X\ (0) 00 (0 — o)
= 0,05(0)0(0 — 0’) + 205(0)0s0(0 — 0').

\/"\

One could explicitly compute {C3(c),C1(0’)} to get the same expression, or just use the anti-symmetry
of the Poisson bracket combined with the extra minus sign which comes from

f(0)0s8(0 — ') = —f(0")0y (0 — ).
The final relation in (2.5) is

{Ca(0), Ca(0")} = 2pn (0){p™ (0), Ca (o)} + 2T X" (0){ X}y (0), Ca(0”)}
= 4T%pN () X"™N(0)6(0 — ') + AT?*pn (0) XN (0)0p0 (0 — o)
+4T2X’N(a)p§v 0)0(c — o) +AT?’ XN (0)pn (0)06 (0 — o)
= 4T?0,C1(0)d(0 — 0') 4+ 8T%C1(0)dy0(0 — o).

Superstring

Substituting this expression for 7T into the Lagrangian minus the Wess-Zumino term,

_ @ 77 4@ 1 2, 12 4(2) 4(2)
&L — Lz = —str| T A P TAY (72 + 1242 40 |
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B.1 First-order formalism

TO A TO

— _gtr [T’YTTAS?)AS'Q) + T,YTJA?)AS_ ) + T TO'A( )A(Q) + T7 '7 A( )A(Q)
YT

1

(TQ’YTTAS—Q)AS'Z) + 2T2,YTT7TUA$_2)AS2) + T2,_YTCT,}/TO'A((72)AC(72) + T2A¢(72)AS‘2)> j|

- 2T~TT
TOATO
— _str [T’yafBA(Z)A ,.}/O'(J’A( )A(2) + T7 7’7 A( A(2)
T

TTA A(2) ’)/TUA(2)A(2) T’YTU e (2)A 2) T det(’ya’B)A(z)A(z)}
T o 2 ATT 2fy’7"7' o o
TOATO

— 37
= —str[T*94P 4 — 7770 AT A(2)+T777 AP AP

T gD 4@ o g 4@ T @) @) T oo @) 420 T ) A<2>}
2 2 AT 2 2 AT

= —str[ TP AP D) %WA@AQ) — Ty AP AP %

17742 4P = LB str (AP 4D),

which is indeed the kinetic term of the Green-Schwarz Lagrangian (1.33).

Kappa symmetry
To begin we have two easy identities to prove. Namely,
1, 0 ]0 0 0 0]0 a 1, 0 ]0 0
sty | 0 -1b]0O 0 0 0/|b 0 0 -1, 0 0 -
+X2H 7170 0 |1, 0 0 b |0 0 0 0 |1, o | %
0 0 |0 -1 —at 00 0 0 0 |0 -1
-1, 00 0 0 0]0 a -1, 00 0
0 1,/ 0 0 0 0/|b 0 0 1,/ 0 0
-1 . 2 2 _
X = o 1, 0 0 o]0 0 0 01, o | X
0 0] 0 -1y —at 00 0 0 0|0 -1

These equivalently imply (2.29). Our next task is to find A = —g~!dg given by (2.31) and sort it into
even elements A, and odd elements A, such that A = A, + A,. By the product rule,

A=—g tdg=—g(X)Ta(x) A d (Ag(x)a(X))
= —g(X)Lg() AT dAg(x)g(X) —g(X) " Tg(x) g (x)9(X) —g(X) T dg(X).
@ @ ®

Let us take care of (1) first. In light cone coordinates, the longitudinal matrix A(t, $) is given by

ex i E(l’+ — a:B_) 0
A(t,¢) = exp 5 < 0 Yy +(1- a)l‘—))

:expi S (4 + (5 —a)a_) — 2o 0
2 0 S (ay +(3 —a)z_) +3iz
= exp% i <x+ +(z - a)a:_) + E_x_}
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The argument in the exponential A commutes with its derivative, which is still in terms of ¥ matrices.

This means
i

AYdA = 3 [E+ (dx+ + (% — a)d:c) + ;Ed:c]

such that we can use the identites (2.30) to find

D= —a®) a2

s, <dx+ 4 (% - a)das) 4 ;de] 8(0)8(X)
= 000 [a0? (4 + G — o) + 53| a0
= a0 | (e + G~ o= ) B (14 28+ /T + Jao-n | o)

The only odd term in (1) is clearly the one with the factor ¥ x+/1 + x2 which is the product of one odd
element (y) and even elements (X4, g(X), g(X)~! and /1 + x2). To find (2), we should calculate

g(x) " tg(x) = (—x + VI +x2)d(x + V1 +x2)
= (VI 4 x2dV/1 + X2 = xdX)even + (V1 + x2dx — xd\V/1 + X2)oda-

This is consistent since, under the substitution y — sinh y, the above becomes dyx when g(x) = exp x. If
we define the even and odd parts of g(x) 'dg(x) as B and F respectively'®,

@ =—9(X)g(x) " Hdag()e(X) = —g(X) ' Ba(X) — g(X) ' Fg(X).

Finally, (3) is an even term as it only depends on X. Adding the three yields (2.33).

B.2 Giant magnon

In this section we will discuss a solution to a heavily simplified version of the classical superstring in
AdSs x S5. Namely, excitations of the string will be confined to a single transverse field of the sphere. For
example, setting all transversal fields to zero except y! reduces AdS5 x S° to R x S? spanned by ¢ x (¢, y1).
It will be convenient to deal with the new variable
1
Y
7= —-F— B.3
T o/ (B.3)
where this time |y|? = (y!)?. Had we instead considered an excitation in AdSs, the denominator would
not be well-defined at |z|> = 4, hence the restriction to S° in particular. It follows from (1.104) that

Gyt = G5, = 1 and the other components of the target space metric are

2
(1 |y B 1
G¢¢<1+|y|2/4 S S AR

We are interested in finding the metric induced on R x S? by this reduction. So far we have

d52|AdS5 % g5 = —dt® + d2'd2" + G¢¢d¢>2 + nydyidyi

18These terms can be rewritten in terms of commutators of homogeneous elements, which in turns gives away their degree.
This is shown for B, in (B.32).
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B.2 Giant magnon

which means
ds®|gpx g2 = —dt* + Gsdd® + Gyy(dy')?. (B.4)

Wanting to express these metric components and the differential dy! in terms of z, we look at

B 1 ly|?/2 L[ 1—y?/4 1
de = [1 TR O |y2/4>2} W= {u T y|2/4>2} W

which directly implies

2
e (1+]yl?/4 2 1 9
Gyy(dy )™ = <1 — W2/ dz* = —G¢¢dz .

Looking at the form of G4y, it is natural to look at

e (PR P 1 /2 (/)2 (1 - |y|2/4)2 _G
(1+[y[2/4)? (1+ |y[2/4)2 1+ |y2/4 ¢

Thus the metric induced on R x S2 by eliminating all but one transversal degrees of freedom is
ds?|gy gz = —dt? + (1 — 22) 7 d2? + (1 — 22)do?. (B.5)

We can now proceed by analysing the restricted first-order formalism. We already found the Hamiltonian
H (2.23) by solving the constraint Co = 0. Notice that it features the string tension 7', both explicitly
and implicitly through # . In 2.2 we will be taking the large tension limit. Also notice that the tension
comes along a o-derivative; ’_. To retain a finite light cone Hamiltonian H, it consequently jumps out
to us that we should make use of the reparametrisation invariance of the spatial coordinate to redefine
o — To such that Ta' — 2'_. We have successfully removed all tension dependence of H and are left

with the action
oo mrT
S = T/ dT/ do (pz2 —H). (B.6)
—o0 —nrT
The Hamiltonian can be calculated by evaluating (2.23) when Gy = 1, G4 = 1 — 22 and

z? = —ppa't = —p.2, 9H | = (1—22)p2 + (1 —2%) 12

Using the shorthand
Zy=(1-0a)Gyy—a*Gu=(1-0a)?*(1-2*)?-a?=1-2a— (1 -a)?? (B.7)

the Hamiltonian (2.23) becomes

1-(1-a)z2 1
H = —ﬂ + —\/(1 — 22)[1 4 Z42H | + ZCQLI/_Q]
Za Za
which we can rewrite as

1—(a—1)22 1
H(z, 2 p:) = Rl Gl O + Z—\/l + (1= 22)Zep2V/ 1 — 22 + 2422, (B.8)
a

Za

Since we are interested in soliton dynamics, it would be convenient to have an equation relating z, 2’
and %, for example. These variables are naturally related by wave-like differential equations and could
prove useful in writing down a solution to the former. To this end, we will now switch to the Lagrangian
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formalism. Given the Hamiltonian (B.8), one can find the momentum p,(z, 2/, 2) conjugate to z by solving
the equation of motion §5/dp, = 0. The latter implies

. OH g [ 1=22+ 2,22
0=3— —5—p.(1— .

Some simple algebraic manipulation yields the expression

z

/-
p(z,2',2) = . B.9
< ) V(= 22) /(1= 22)2 —[22 — (1 — 22)22] 2, (B:9)
Substituting this expression into the restricted action gives us the Lagrangian
) 1—(1—a)z? 1 .
Lz, %) = - 1—22)2 - [32 — (1 — 22)2'2)Z,. B.10
O AV ((er LA i e S (B.10)

Note that .Z has a term of the form v/ X2 — X2 which is reminiscent of the Nambu-Goto action. Having
jumped the Legendre gap, we ansatz a general solution to the wave equation;

z = z(0 —vT), =02 (B.11)

where v is anticipated to be the speed with which the soliton travels in the o direction. It is important to
stress that this solution would describe a solitonic vibration of the worldsheet, i.e. a localised excitation
which propagates in the (7,0) space in contrast to a wave propagating in AdSs x S° spacetime. This
description is useful because we can eliminate the Z degree of freedom by substituting (B.11) to find the
reduced Lagrangian

2
Lz ) = 1-(1-a)z* 1 \/(1 —22)2 4 (1 — 02 — 22)22Z,. (B.12)
Za Za/(1 = 22)
The new equivalent to a conjugate momentum 7 is
0R (1—v%—22)2
Ty = —FF = — (B.13)
0z V(1= 22)/(1—22)2 + (1 — 02 - 22)222,
such that the reduced Hamiltonian is
1—(1—a)z? 1— 22 1 — 22
Hp =1 — = (L= (1-=)v-=) (B.14)
Za Zo/ (1= 22)2 + (1 — 02 — 22)212Z,

and one should in principle invert (B.13) to find Hg(z,7,). However, o is clearly cyclic so we have a

Hamiltonian where the ‘time’ coordinate is cyclic, which means Hy is constant in o. Solitonic solutions

are localised so they must satisfy the sensible boundary conditions z(+o00) = 0 = 2/(+00). In this regime,
1 1

a a

which tells us that the constant Hg vanishes for all o. Solving (B.14) for 2/,

(1- 22)3

(1—22)2 4+ (1 —0?=22)2"22, = L
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where

(1-22)—(1-(1-a))?=(1-22)—(1-21—a)z? 4+ (1 —a)?z%)
= 22421 —a)? - (1—a)?2* =22 (1 —2a— (a— 1)222) =222,

so that finally

1—22 2 22

2

= . B.15
? <1—(a—1)z2) 1—v2— 22 ( )

This non-linear differential equation can in fact be solved for z(oc — v7) for various values of a. Since
0 < |z| <1 as discussed, the energy T [ doH is only finite for

. 0< <1 (B.16)

We can of course assume v > 0 by choosing a direction of propagation. The solution is the inverse of

1 — 2 — 22 1 —02 — 22
(a—1)V1—2v2 - 22 — aqvarctan (H> +Vv2 — larctan (glz) . (B.17)
v w2 —

which looks like In particular, we can take z > 0 by always going to y! > 0 so that 0 < z < zg = V1 — v2.

o(z)

N
— T

1 1 z

-1.0 -0.5 L 0.5 1.0

Figure 8. Giant magnon solution o(z) for a = v = 0.1

As mentioned, we are interested in the dispersion relation for this solution which relates its target space
energy to its worldsheet momentum. Since o is rescaled, the worldsheet bounds go to infinity in the large

tension limit
wrT oo 00 20 H
E—J—T/ doH = T/ daH—2T/ dz —.
—arT —00 0 ‘Z |

Thus we need to calculate the integral of
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which has a simple anti-derivative such that

Z
EfJ:fQT\/zgfﬂ‘OO = 9Tz = 2T/1 — 2. (B.18)

Turning to the momentum, we are looking to evaluate
00 20
Pws = —/ dop,2 = 2/ dz |p| (B.19)
—00 0
where the conjugate momentum (B.9) reduces to
vz

Dy = . (B.20)
(1-22) zg — 22

The indefinite integral is easy to evaluate:

/ / _ zpsinz /d zpsinx
_ _ 7
(1 22) / 1—z051n x 1—z§+zgcos2x
1
:/d U ———5—— = ————= arctan ———
1—zo—l—u /1_23 /1_20

Retrieving u = zg cosx = zg cosarcsin z/zg = 4 /zg — 22 and evaluating at the desired bounds,

2=2z0 1 5 1
=0+ ————— arctan arccos 1-— Zp = — arccosv,
v

=0
# \/1—20 \/1—,20 \/1—20

which ultimately yields pys = 2arccosv. Thus, the dispersion relation is (2.55).

B.3 Gauge-fixed Lagrangian

This is an appendix reserved to the computation of (2.50) and uses intermediate results from [8] as
guidance (some conventions differ). For brevity, we will give X a holiday and temporarily write g(X) = g.

Finding p,

To evaluate p4 in the expression (2.37), we will need to find

p =17, str(S45_g?) — Lo str(x? g?)
5 I (B.21)
+ %77'# str(2,5-g%) — ik str(2_g?)

where 7T+ and 77, are the coefficients of (2.27). Because of their definitions in terms of ¥ = ~°, the

matrices X satisfy
Yi¥r =T, 3 = 1g. (B.22)

In turn we can simplify the first two terms in (B.21) to
1
Py = §7T+ tr(gQ) - —7'(‘ Str( 2) +...
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B.3 Gauge-fixed Lagrangian

Given the square-root bosonic parametrisation g (1.114), the square g is

LelsP/Ay 1 i 0 i
o | TopEaAta T TREaEt Y . B <\/Gtt]l4+\/GzzZ v
o 1-|y|*/4 1 gl T 0
0 TlyP/A 4 T TpEay Y

0
VGgpla+ v/ nyiyiVi) .

(B.23)

Since the matrices v* are traceless by definition, this means we can use (1.104) to get

tr(g%) = 4\/Gyt + 4,/Gyg, str(g?) = 4v/Gy — 4\/G pp-
Defining G+ = (v/Gy + /Gge)/2, we can concisely write the first two terms as
1
py =G T4 — inﬂ-f + ...

All that is left is to show that the third and fourth terms in (B.21) indeed vanish. Starting with the third
and assuming p < 4 for example,

) A0\ (=75 0 1y +azlyt 0 }
str(Z#E,g ) x str{ (0 0> ( 0 AP 0 bly + cy'~*

A A A DA _ '
o<str{ < T gz Lt 8) } = —tr(ryﬁ‘fyf’) —azltr(’y“’y‘r’vz).

The cyclicity of the trace combined with the anticommutation relations of the gamma matrices imply both
traces vanish, and hence so does str(EuE_ g2) for any p. The same steps applied to str(E_QQ) reveal
that it is proportional to two traces, both of which similarly vanish. Thus py is given by (2.41).

Solving C; =0

From the discussion above and the expression (1.114), it is clear that we can write

g=0+1s+9-T+g,5  02=Gils+G_YT+G,5,, (B.24)
where we define the coefficients for i = 1,...,4 by
EIJFZEW(Q):1 O S 9@':1272.,
8 2 \/1 — 122 2 \/1 + |2 2 \/m (B.25)
i

1 1 1 i

g 1t(g) L g S
_ = —str = - - = , 44i = =
8 2 /T2 2/1+yP T2 Ty

and similarly

1 11+ 22/4 11—|yl?/4 2
Gi=-tr(g?) == 5 =1 rna
+ =g (o) 21— |22/2 " 21+ |yl?/a’ L= P (B.26)
1 11+ [22/4 11— |y]/4 iy’ |
G_ = -str(g?) == -5 o Gani= e

These explicit expressions for the coefficients are not so important. What matters is that we can express
g and g2 in terms of the ¥4 and ¥, matrices which will prove useful moving forward. Also recall the
definitions of the bosonic and fermionic parts of g(x) ™ '9a8(x):

B, = \/]l+x28a\/]l+x2 — xOuaX, Fy =1+ x20ax — X0aV/ 1 + x2. (B.27)
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As explained in 2.1, we want to solve the constraints Cy and Cy (2.26) in order to find 2’ in terms of the
other spacetime coordinates. Using (2.41), we start by finding

1
Ty =Gt + 3 T-G-). (B.28)
We should solve C7 in the light cone gauge with z = 7 but leaving py free for now,

- Str(Tl'Ag-Q)) = —str(TMAe,s) = str {nglixl_E_g + g 'Byg+ g '0sg }

1
= ppa’_ — str(TAL,) = 0. T A, (B.29)
We will now evaluate — str (7T Aé:a) which is doubly useful; for « = 7 the term appears in the to-be-gauge-
fixed Lagrangian (2.40) and for o = o as we just saw the term appears in Cy. Using the expression for

g~ 1dg in terms of Z and Y in A.8 and Yi¥y =1,

str(ﬂ'g 16ag —str <7T+E++ —TT_X_+ 7T E“+7T]11]lg>g_18ag}
1
721

1 , N1 i1 , o
S E S N T S o
5 |Z|2/48az r(+7y 27T4+321+|y|2/48ay r(iyly
T, Ty ;
= 9a2 00y = puOaat B.30
T Al Tty S e (B30
where we found the transversal momenta for ¢ = 1,...,4 to be
5 7T4+z
. VG T, - Gy TT B.31

To make use of the commutation relations (2.29) of ¥4 and y in evaluating the term with B, in
— str (7T Aé‘,a), we rewrite By, in the following way:

1 1 1 1
Ba = 5\/11 + X201+ X2 + 5\/11 + X200 V1 + X2 — 3X0ax — 5xdax
= %M— %8(1\/]1"‘9(2\/]1"‘9624'%\/]1+X28a\/]1+x2
1 1 1
— 520 + 500X — 5x0ax

1 1 1 1
= 59axx = 5X0ax + 5\/11 + X200V 1+ x2 - 55‘@\/11 X2V + X2 (B.32)

Using cyclicity of the supertrace and ¥4 x = —x>4,

str(X4Ba) = %str(ihr@axx — X4 x0ax) + %Str(z+\/:ﬂ. + x20aV1 4+ %2 = 240V 1 + X2/ 1 + x?)

= %S‘Dr( — 24 x0aX — L+ Xx0ax) + %Str(z+\/]l + X200 V1 + X2 = 4V 1+ x200 V1 + X2)
= —str (S x0ax)- (B.33)

In contrast, because y and ¥_ commute, str(E_Ba) = 0. Together with the decomposition of g2 (B.24),
these two identities imply

str(ﬂ'g_lBag) - %71‘4' str(E+Ba92) - jzﬂ-— Str(E—BaQQ) + %71'“ str(EMg_lBag)
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- %7@ {Gystr(34Ba) — G- str(E=B,) + Gy ste (B2, |
+ jzﬂ'_ {G ste(3=Bq) — G- str(34.Ba) + Gy str(S—Ba¥,) |
+ %7@ str (2,0 ' Bag)

= %<7r+a+ - %ﬂ'_G_) str(24-Ba) + %W 51 (38 " Bag)

; 1
= —%p+ str(2+xaax) + 57'('# str(EMg—lBag).

The Y4B, terms vanish because 4B, = BaX4+ while ¥43, = —X,¥4. The last term can be
simplified using (B.24) and (2.32) as follows:

str (95,0 ' Ba) = g4 str(Sug ' Ba) — g- str(S4 22,97 Ba) + gustr (S0 ' Ba)
= g4 str(Xu0 " Ba) — g-str(3,545_g ' Ba) + gustr(S,5097 1 Ba)

+ gy str([Sy, Sulg ™ Ba)

str(Eugg_lBa) +gv str([Zy, Zu]g_lBa)

str(2uBa) + g str([Ey, Sulg ' Ba).

Importantly, any trace involving an odd number of ¥,,’s and B, is zero using the trick
str(S2HB,) = str(S2MTIN, 0, By) = —str (8132 S By) = —str (82T B,) = 0.
Similarly, by the commutativity of B, and Y4 and the property (2.32),
gustr([2y, Bu]e ' Ba) = gustr([Sy, 2] 'S4 24 Ba) = gu str([E0, ZulgBa)-

Thus the last term of str (7T gleag) can be rewritten such that

_ i 1
str(TTg ' Bag) = — 5P+ str (S x0ax) + 39T str([Sy, Su]gBa). (B.34)
Combining expressions (B.30) and (B.34) we finally get,
i 1
— str(T('A(J;’a) = puOazt — 3P+ str(2+xaax) + 59'/7{-# str([ZV, Eu]gBa) =0
Excluding the g factor, the supertrace term has the factors
gy ~ O(fields!), 7, ~ O(fields'), B, ~ O(fields?)

meaning it is already quartic in the fields X, x. Because in the decompacitifaction limit we rescale the
fields such that terms of order six are neglected and, looking at g+, g,, we find to leading order

i 1
- str(ﬂ'Aé:a) = puOaxt — SP+ str(S4 x0ax) + §9V7T/J« str([Sy, Bp]Ba) =0
which in the first instance implies (2.42) for a = 7 and for a = o we solve the constraint C; = pya’ —
str(ﬂ'Ae’g) =0 to get
1 i 1
= “or pua’t — 2P+ str(E.,.xx') + 59,,7'('” Str([Zy,Eu]Bg)

This expression (2.44) agrees with [8], from which it appears in [1]. (Note this p4 is half of the p4 in [§]
which makes this 2/ twice the 2/_ in [8].)
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Wess-Zumino term

Here we will evaluate the Wess-Zumino term
Ly = —gmaff str(4)a)) = %chtr (A(T”Aff’) - AS,”A@).
Substituting the definition F = (g(x)"'dg(x))odad in the odd current A, o (2.33),
Ao = g7 it S V1+ 2+ Fr |8, Aoy =5 'Fon.

To find the grading projections A1) and A®), we can use the decomposition formula (1.31) with A — A,
as the bosonic projections are not relevant. Noting that Qz(Ao) = —A, since A, is odd,
A % Ao — 19(Ao)] = = [Ao +iKASKTY],

[Ao — KA.

l\D\b—l[\DM—l

A = 114, 1 i0(4,)] =

We will clearly need to deal with terms of the type Kgst...(g71)stKC~1. Tt turns out Kg*t = gK. To see
this, we look at the expression (1.114) for g, the definition of K = diag(—y2y*, —2~%), and use the fact
that 4* are Hermitian to rewrite the two relevant diagonal entries as

,Cgst ~ 2272,}/4(,7 ) _ 2272,}/4(7 ) _ 21727471 2272,}/4,}/2 —‘1-2372’)/4’)/3 24,}/27474

1.1.2_ 4 2,224 3.3~2,4 4.4,.2_ 4

o4 (B.35)
= 2Pyt + 222t 4+ 2Bt + 2yt = 2yt ~ K

Similarly, because they are both inverses through a sign change, (g~ 1)**KX~1 = K~1g~!. In particular,
S L A O T S R O L L

The Wess-Zumino term is proportional to

str (A A0 - A a®) - istr ([Aor +1KASL K] [Agp —iKASK] = (7 5 o))
istr (éw‘lﬁ+ ALK A g — Ao AT KT+ KASL ASKTT — (7 0))
istr (KASLK Aoy — Ao s KASL K™ — KASL K™ Ao s + Ao o KASLKT)
%str (AowKASLK™ — Ay 7 KASLKTY) |

Using the expressions we derived above for A, o and ICAmaIC’l, this becomes

str (AQ)ASE’) —AE,UAQ)) _ %Str <F0921C [i{t+(z+x\/w)st Fst} -1 f2>
_ %Str (|:ii+2+xm_|_ FT] gQKF;tK—lg—2>
(R (BT K ) + Lt (Rog?EE )

1
+ 5 st (4 SV 1+ X2 KESK T g2) — %str(FTgQICFsth‘lg‘Q).
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But the top line line is in fact equal to the bottom, since str A = str A5 and

str( -0°K z3+X\/m sti—1 _2) = str( St’CE+Xm1C stht)

= str(S4xvV1+x 2g2KFstct _2)
with a similar step involving the identities
Kst — IC_l =_K (gil)StK _ Kg:tl

for the other term. Thus we double the bottom line yielding a preliminary form of the Wess-Zumino term

T T
Lz = i”§ str(Frg®KFstK1g™?) - mc+§ str(S4xV/ 1+ x2g*KFsCg™2).

We should now substitute the decomposition (B.24) for g? while the one for g=2 = g(—X)? is found by

sending X — —X such that z* — —2 and y* — —y’. Since the coefficients G+ are expressed in terms of
22| and |y?| only, this has the net effect of sending G;, — —G,. Noting that YQ(M)Y = Q3(M) = —Q(M)
for M odd, the final form of the Wess-Zumino term is a sum of

ng str(Frg?KFS'K1g™2) =1 (G — G2 str(FKFSKE)
— ingG#GV str (2, Fr S, KFS)
and, remembering ¥, ¥4 = —¥1%,,
—Iil‘+g str(S4x V1 + XQQQICF;th_lg_2) = —/m+ (G’ - G%) Str(E+X\/WKF;t’C_1)
- m’c+§GMGV str(Su S x V1 + x2S KRS,
Grouping terms, we have an explicit expression (2.49) for the Wess-Zumino term of the Lagrangian,
Ly = k= (G2 G2 ystr([iFy — iS4 xV1 + X2 KFSC)
- %GMGV str(Sy[iFr — iS4V 1 + 2SR,
SO]ViIlg 02 =0

Moving on to Cy, the following holds thanks to the ¥ identites (B.22):

Str(7T2) = —éﬂ}ﬂ', str({34,5-}) + %7'('“7'('” str({Su, Su})

1 1 1, (26"14 0 0 0
= —gﬂ-+ﬂ-7 StI‘(2T) + 17T;Lﬂ-yi Stf(( 0 0> or <O 2(5“’/]14))

2
=2 T + T2

The extra 1/2 factor comes from averaging between the times when p < 4 and p > 4. By substituting
(B.28) we can now write Cy as a quadratic in 7T _:

Co = str(7'('2 —+ gQAg?)A((,Q)) = str(7T2) + g2 A2
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_ 1
0=2TT T+ Ty +g?A? = 267 (py + ST -G )T + T, + g°A°

0=T2G_ +T_2p; + G(T% + g2 A%).

The solutions can be manipulated in the form found in [8, p. 45|, namely

—op. + \/4p1 —AG_G4 (T2 + g2 A2)
2G_

_ 2 _ 2 2 42 _ 2 2 2 42

p+i\/p+ G_G(TT; + g A7) p+¢\/p+ G_G4(TT; + g~ A%)
= X

G- —p+ F \/pi — G_G(T0;, + g°A%)

B Pt — P2 + G_G4 (T2 + g2 A%) - Gy (T2 + g% A%)
~G_pr FG- \/pi G Gy (T +4°A%) pp+ Wi —G_G(T, +g°A%)

We should disregard the minus solution in the last expression. For small tension and vanishing transversal
momenta, the denominator would present a singularity leading to a non-physical value of 7T _.

Simplifying .4>

To compute A2 = str(A((f)A((f))7 we first need to find A((,Q). According to (2.33),

m_ =

P - _
Ao =—1lg 'y g-—g'Byg-g7 1.
—_——— ——

D @

where g’ = 9,g. Now we use Ag) = %[Ae,g — Q(Ae,0)] and gtk = K(gt!)* (B.35) to compute

oL :jlg_lZ_gx' FKL (070 0)" x'lC_l} = el [ oks K = Ll B g+ e?s ]
@@ = % 97 Bog + K (a7 Bog) KT = % [0 Bog+gkBSK g7,
@ = % ol K ()] = % [o7'e' +d'sa'].
Therefore, as stated in [§],
AP — (i:c’ [X_g® +g*2_] + % (07 'Bog + gkB K g1 +% o +g’g_1]> .
For clarity, we can write A((,Q) = —iga:’_ B— %C such that we need to evaluate three terms in

2 1 p 2y 1y 1 2
A = 64x_ str(B )—|— 8:13_ str(BC) + 4str(C )

Term quadratic in 2"
This calculation is straightfoward using (B.24):
str(B?) = str (S_g?S_g* + ¢’S_¥_g¢? + ¥_g?g°S_ + ¢g°Y_g?¥_)
=str (13 + g* + g% + 1s) = 2str(g*) = 2str((g%)?)
= 2str ((G4+1s + G-Y + GuE,)?) = 4G G_str(Y) = 32G1G_.
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B.3 Gauge-fixed Lagrangian

Term linear in 2’

We will need to use the fact that str(X_g’g ) =0 for all n € Z. To show this, notice

Ogstr(S_g"t) = str(X_g'g") + str(X_gg'g" ') + str(S_g’g'g" ) + ...

S_g'g") + str(S_g'g"” 2)—|— str(S_g'g"” 4)+...

(
str(E_g"+1) str(g Iy g”) = str(E g 1) = str(E g 3)
(

= str(

g") +
g") +

Different scenarii for n odd or even should be considered and the proof then follows by strong induction
on n. To calculate this term, we will need to find the supertrace of the product of

B=gS g l+g!'Sg C=g'¢+g9g ! +9 'Bog+gkBSK g7t
We get
str(BC) =str(gE—g g’ + gX—g 'g'a"! + 9¥_g 2Bog + gU_KBIK g?

+97'5 g +o'Sogg's ! +07 'S Bog+ g‘lEfQZKBffK a7
= str(S_Byg! + 2B + 2By + KX_(g72B,¢?)"'K 1) = 2str(X_ Bog*)

The two extra terms separately vanish because we can write B, as a sum of commutators (B.32) such
that ¥_x = xX_ implies str(E,Ba) = str(E,Bgf) = 0. We are left to calculate

str(X_Bog?) = str(S_Bo(Gyls + G_T + G,5,)?)
=2GG_str(YX_By) 4 2G4 Gy str(SuE-By) + 2G_Gystr(YE,5 - By)
+ GuGy str({S,, 1S By).

The second and third terms both vanish because ¥4+ B, = ByX+ while ¥1%,, = -3, ¥1. The last term,
if non-zero, will contain a 4 x 4 block which satisfies the Clifford algebra relation such that

{E4 50} <0 (1g £ )

contributing two terms which vanish for the exact reasons the second and third did. In the end,

(B.33)

str(BC) = 4G4 G_str(TS_By) = —4G4 G_str(%4 By) 4G4 G str(S4xx').

Term independent of ="
This term can be calculated as above (see [8], but adding the three yields the final result
1,1 17,11
A% = —x’_2G+G_ +izl GLG_ str(E+XX/) + £z + yy + = L str(B B )
-5+

| | B} B.36
— SGLGy st (S B)By) + 5(G3 — G2 st (B, KBS ) (B.36)

1
+ G4 G str(TBo KBS K™Y + 5 GGy ste(SuBoSyak B K.
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Simplifying p_
The starting expression for p_ is (2.37). Substituting the decomposition of 7T, we get

i i
P =3 str(§7'('+2+2+9(18 + 2X2)9) @

+ L str(%ﬂ'_E_ZH—g(ﬂS + 2X2)9) @

B V]

1 1
+ o str(TuESre(s +2x7)g) @)

2
i .
+ §str(7TllIlgE+g(]18 +2X2)g)~ @

Since 771 does not appear in the constructed Lagrangian (2.24), we can set (4) to zero without affecting
the discussion. Each other term can now be evaluated remembering the decomposition of g and g2, and
the various commutation relations of ¥4, ¥, and x. Starting with the first term,

@®= —377+ str(g?(1s + 2x%))
_7T4+@ = str (G L6+ 2x%)) + str(G-T(Ls + 2x%)) + str(GuSu(s + 2x°))
= 2G4 str(x?) + 8G— +2G_ tr(x?) + 2G str(Z,x?)
D= —%7T+G+ str(x?) — 2M 4G — %7T+G— tr(x?) - %7T+Gu str(Sux’)-

However, from the r-symmetry gauge fixed form (1.123) of y, we see that

—mt 0 | 0 0

0 60| 0 0
2
= B.
X 0 0 66T 0 (B:37)
0 0 0 —nfy

which directly implies

tr(x2) =0, Str(XQ) = 2tr<9T9 - 7777T>. (B.38)
We also can calculate Ep,x2 more explicitly. Taking u < 4 for example,

—mt 0 | 0 0
' m ot
g2 (2|0 o 6| 0 0 B »yl< g” e(T)e)O
=0 o 0 o0 |66t o0 | ; K
0 00 —nfp
As a result, we have
S —ant 0
. 2\ _ m
(b)tr(EiX ) =tr <’yl < 0 oto )),

where for each ~4* the trace vanishes:

0O 0 0 -1 0 0 e o

‘ o 0 0 1 0 —mt 0\ 00 o o |
(b)tr(le ) = tr 0 1.0 0 0 oto =tr c e« 0 0|7 0,
-1 0 0 O e o (0 O
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0 0 0 i 0 0 o o
SuEn) =l o L ( _gnT oo > S R B
-1 0 0 0 e ¢ 0 O
and similarly for 43 and 4*. In conclusion, for all ; < 8,
(s)tr(Zux?) =0. (B.39)

The first term reduces to

D= —%W+G+ str(XQ) -2 G_.
The second term in p_ can be calculated in a similar fashion:
@ = ‘i”— str(Tg?(1s + 2x%))
—%@ = str(G4Y(1g + 2X2)) + str(G_(1g + 2x2)) + str(Gu TS, (s + 2X2))
= 8G 4 + 2Gtrlx?) + 2G_ str(x?) + 2G e (Sax)
@ =-2T_Gy - %77_(;_ str(x?).

The third term will take a little more work, but keep faith. This time we cannot commute g past the 3,
matrix so we must deal with the decomposition (B.24) of both g factors. Starting with the left factor,

i
@)= il str(2,540(1s + 2x?)g)
i 2 i 2 i 2
= Eﬂustr(2u2+g+(llg+2x )g) + Z?THstr(ENZ+g_T(]18+2X )g) + Zﬂustr(EME+gy§ly(18+2X )9)
Y str (2,24 (1 +22))—17T tr(S,E_(1 +22))+i—7r tr (2,24 20 (1s + 2x?)g)
—4u9+ pwa+(48 X)9 4ugfsr,u78 Xg4,ugusru+u8 X)9) -

Ga) €D)

We now substitute the second g’s decomposition to get

i i i
Ba) = 1T uo str (2,54 (1s + 2xH)g+) + U str (2,54 (1s + 2x?)g—T) + 1T ug+ str (2,54 (1s + 2x) g0
i 2
=040+ ;7 ,.0.9+ str (S, 224 (1s + 2x7)).
The first term disappears because the supertrace has cyclicity and the 1g term is the supertrace of
XY+ = —X43,, while the x? term vanishes for the same reason since X1 x? = —xXx = x*24. The

second term is identical except for the supertrace being replaced by a trace due to the presence of Y. By
the exact same reasoning with Y4 < 3_|

i i i
3Bb) = ~ T ug- str(2,5— (1s + 2x?)g+) — 1o~ str(2,5— (1 + 2x})g-T) — 1T ud- str(2,5—(1s + 2x) gy

i
=0+0— ;Tyugvg- str (2, 2,5 (1s + 2x%)).
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Finally,

4
T@ = T gy str (2,54 50 (1 + 2x%) g4 ) + T gy str (2,545, (1 + 2x%)g-T) + T gy str (2,545 (1s + 2x%)ga

= —T0 g str (2,50 54 (Ls + 2x%)g4) + T pgw str (2,5, 8- (Ls + 2x%)g—) + 0.
The third term is zero because there are three matrices of type ¥, along with ¥, which anticommutes
with ¥,,. And since Y1 x? = x2%4, this results in an overall minus sign once X4 is cycled through the

supertrace. The first remaining supertrace in (3¢) cancels the 1g term of and results in a commutator
for the x2 term while the second supertrace does the same for (3b). We are thus left with

®= %77'#91/ str([Sw, Zulx (04 5+ — 9-3-) (B.40)
which agrees perfectly with [8]. Summarising the current form of p_ = (1) +(2) + (3):
D= —%W+G+ str(x?) — 274 G—, ()= —%ﬂ',G str(y?) — T_Gy,
®= iiﬂ-ug'/ str([El,, EM]X2(9+E+ - Q—E—)~
Because we want to ultimately express the gauge-fixed Lagrangian in terms of XMy and pj; exclusively,

we should eliminate 7T+ and 7T,. But we found expressions for 7T, in (B.31) and for 77 in (2.45) and
can express 7T 4 in terms of p4 and 77— using (2.41). This means we should write

1 1 1
D+®@) = —7(7T+G+ - 57T,G,) str(x?) — 2(TM+G— — 57LG+)

P+ 1
where
Te —ira. =S¢ —EGi*W )
_ G- 1G%
G- G2 - G?+
== G7+p+ + 72G+ T
such that ) )
G1 -G 1
DO+@= —2—p+ + Tﬂ'_ — 3P+ str( )

Adding this to (3) yields the final form of p_ in (2.46) which also agrees with [8] up to definition of p.

B.4 Two-index field Lagrangian

To derive (2.65), we need to start by finding a momentum matrix 7T | such that

str (77 | X) = puit = Pag Z9% + PpaY %

— 83 —

o)



B.5 Lagrangian mode decomposition

This way we can properly read off what the momenta conjugate to Z*® and Y*@. Comparing the compo-
nents of X in terms of z# and Z%%, Y% given in (1.129), it is easy to read off

;0 1 ;1
z33 = 5(21 —iz9), 734 = 5(23 —iz4),
. 1 - (B.41)
z4 = —5(23 +1iz4), 74 = 5(21 +1iz9).
Thus, the components of the conjugate momentum should be
Ps3 =p1 +ip2, Psy =p3 +ipy, (B.A42)

Ps=—-p3+ips, Py =p1+ip,

since we don’t want independent directions to mix. If we start with a generic momentum matrix in terms

of 2 x 2 blocks
0 . 0 0
™ o o o
Ti=l9 o o i, | (B.43)
0 0 im, o

given the matrix Z in two-index form, we are looking for 77 | such that

1 o\ T 34 33
f - T, T Z -7 1 . .
tr(ﬂ'ZZ) =tr [(ﬂé 71_%) <Z44 ]| = ipaazaa.
This is satisfied if
1/ P,; P, 1/-P., —P,;
7Tl:2<13544 ;%) = 7rz:2<P%3 P%ﬁl). (B.44)
33 43 33 34

The same holds for the S® coordinates. Based on the forms of P** and P, it is easy to see that

1
T, = §pu2u- Indeed, the same holds for X = %x”EV by definition such that

. 1 . 1 . 1 . 1 i
str(ﬂ'J_X) = lpux” str(EMEV) = gpu:tl’ str({EM, E,,}) = gpiz] Str({Ei, Ej}) + §p4+iy7 str({24+i, E4+j})
1 1 o . .
= 5Pit 207 tr(1y) = 2payii®? 207 tr(ly) = pid’ + pasay’ = puit

exactly as desired. Similar calculations yield str (7T LT J_) = pupp and the other terms in the two-index
Lagrangian (2.65).

B.5 Lagrangian mode decomposition

Having derived the quadratic Lagrangian (2.57) we will now derive the diagonal form of Lo.

Given the ever-so-useful identity
€%Cepg = 0y 0 — 00y,

we can see the effect of switching which factor of a generic product has upper and lower indices:
ARy = A B eygey y — (Age B0y — AT (3765~ 510 )
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= 5§07 A B — 6§ Ay B — 51 Ay B + Ay B
In particular this means that for any two-index contraction (setting a = b and @ = b above),
A% B, = (2)(2) A B — (2)Agq B — (2)Age B + Aqq B = Ay B

This index notation consistency will be particularly useful as we will often equate contractions of the type
atadq, . = aldaa“ when working through the quantisation procedure.

Let us first look at the bosonic fields. The momenta canonically conjugate to Y%* and Z*® in the
Hamiltonian formalism are determined by the Poisson structure showcased by the kinetic part of .Z (as
well as the matching two-field indices). We can simply read off the equal-7 commutation relations as the
analogue of [X, Pj] = ihé;l:

[V (7 o), P

Wi (T: 0 ) = 105686(0 —o')L,  [2%%(7,0), Py4(r,0")] = i65036(0 — o)1, (B.45)

(Here 1 is the identity operator in the relevant Hilbert space.) The quadratic Lagrangian can manifestly
be partitioned as

Ly = /da L5 = Liags; +Lgs +1Lg + L.

We will start by computing
LAng, = /da (Paayaa - ZPadPaa - YadYa’a - Yééy/aa) = /da PadYaa - HAdS5~ (B46>

Just as for the Klein-Gordon field quantisation, we should first use the canonical commutation relations
(2.59) to find similar relations for the ladder operators a®® and its conjugate ald. Using the identity

ecaeéaeabeab = (—05)(—06%) = 856¢, (B.47)

we can invert the Fourier mode decompositions for Y24 and P, to get

. do 1 . c .
a®(r,p) = \/7207\/779 <Wpyaa’(ﬂa) + %PQQ(T, a)> e P s
Ao (T D) = Vor v <WpYaa(T, o) = 5 Faa(T, 0)) e’

Suppressing the dependence on 7, these expressions and (2.59) together imply

i

1 ‘ i Q ; ’ ot
[ [0 [y 5(0) + 30y~ S| 0m

A /wpwp/
1
- 2m, [WpWpy

1 1 i, : i, : (e !
=5 s /da/dal (—2wp1(5§5§5(0 — o)1 - §wp/15;}5§5(0 - 0’)1) o—i(po—p'o’)

s Wp twy 1 i / i Wp T Wy
_ sagatp T @p l/dae—w(p—p):gg(;@ PP 5(p—p)1

b% 9. [Wply 2T b2, [y

Pty ()] = o

ad(

[a

/dO’/do’l (;wp[yad(o'),Pbi)(o-/)] + iiwp/ [Paa(o—)7ybb(0'/)]> e_i(pU—p/U’)
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which effectively yields the equal-time commutator relation for the AdSs ladder operators:
[ (7, p), al, (. )] = 63¢6(p — p))1. (B.49)
The above calculation differs by a sign from those for same-operator commutators which instead satisfy
[a®(7,p),a™ (,p)] = [}, (7, p), al. (rp)] = 0.

When manipulating ladder operators, it is easier to express

; d 1
Y (r,0) = P

V2r 25

dp . i
Paatr,) = [ iy (alolr0) = () €7,
dp 1

V27 2,/@p
Poy(1,0) = /\;i%i\/@ (aLd(T,p) — Anq (T, —p)) e ipo,

The first term of the AdSs part of the Lagrangian (B.46) is

Jaoraves =5 [ao [ S [ P2 (0l 06) = aaa(a) (020 4 adei ) o0

(a(rp) + alod (7, —p)) €77,

. (B.50)
Z(1,0) =

(a(r.p) + alo(r.=p) ) €77,

\V] \

5 [ / dp\/ﬁ (0) — aaa(9)) (a%4(0) + at* () 6o — )

=5 [ o (ala) = cuat p>) (a#4() + ()

— 5 [ 0 (a0 0) ~ a0 + 0l D)) - a0al-p)a )

—5 [ (alal p)—aad<p>a*“d<p>)+§ [ o (ala i p) - aua)i(-p) .

The second term is

: / do Pag P = / / mm( La®) = aaa(=p) ) (a(—p) = a®i(p)) ) e
S / dp wp ( b (0)aT(—p) — aga(—p)al®®(—p) — al . (p)a"(p) + aaa(*p)a“d(p))

-1 / dp wp (aaa(p)am (p) +al, (p)a“‘i(p)> = % / dp wp (aj;a (p)at*(—p) + g (p)a“d(—p)) -

The third term is

o

B

/dU Yoo Y4 = / / Jon m\/ufiTp < aa(—p) + ald(p)> (aad(p’) +aTaa(_p/)) e—io(p—p')

/ p - (00" 0) + a0 (P! () + ala )" () + ala (P)a’* (1)

H»Jk

1 [ ij (001 0) + by (1o ) + 7 [ o - (aly )l p) + aap)a ().
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The fourth and final term is

/ do Yo, Y = / do / Nor \/—ﬂ ﬁfj;p ( (—p)+ala(p)) (aad(p')JraTaa(—p’)) e 17lr)

=1 / dp - (aaa( p)a"(p) + aga(— p)@“‘d(—p)+ala(p)a“a(p)+ald(p)a“‘i(—p))

-1/ d%j, (aaspial® ) + afy (0)a ) + 5 | dpf; (aha)aT®(—p) + aaa(p)a®®(~p) ).

Adding the four gives
Lads, = % / dp (ala(p)d“d(p) — aaa(p)d“’a(p)) - % / dp (ala(p) fad(_p) —aq (p)&“d(—p))
- i / dp (aaa(p)am (p) +al, (p)a“"’(p)> <wp T p2)

Wp

- i /dp (“Za(p)“m(—p) + aaa(p)a“d(—p)) <_Wp - :p2> :

p

Remembering the dispersion is wp = /1 + p? for unit mass fields, the bottom line vanishes such that
i i tad i
Laas, = 5 | dp (ehaa®(0) - a0a@)il®0) + 5 [ do (af )i (-p) - aqalp)i (1)
1 . .
~ 5 [ o (a0a )l 0) + ol 01 ).

To simplify the form of the Lagrangian further, we should use commutation relations between a®(p) and

.',

we(P). But the first two kinetic terms would involve commutation relations between a%(p) and dl o).
In the Heisenberg picture,

a

% (r,p) = i[Haas, (1), a®(7,p)] (B.51)

where Haqg, is the quadratic Hamiltonian operator corresponding to the AdSs degrees of freedom. We
can read off Haqg, as the third term in Laqg,, and using (B.49) which implies

a®(p)al . (p) + al () (p) = 24}, (p)a®(p) + [a®¥(p), al , ()], (B.52)
we find
Hags, = / dp wp <a2d(p)a“d(p) + ;[a“d(p%ald(p)]ﬂ) : (B.53)

Just as in regular quantum field theory, the divergent [a®®(p), a:rl o(P)] = 44(0) term can be considered the
T

zero point energy from which the quanta spanned by a,. grow. We will see that this term in fact cancels
with another term in Laqs.. Returning to the calculation at hand,

a%(p) = i[Hags,, a*(p)] =i / dp’ wy [azb(p’)abb(p'), a®(p)]
=i / ap’ wy (af, @™ @), a" ()] + o], (), (p)]a™ ()
= i/dp/ Wy (—5?525(]9 - p/)abi’(p/)> = —iwpa®(p).

— &7 —
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We thus recover the usual evolution equations for the harmonic oscillator ladder operators,

% (p) = —iwpa®(p),  al . (p) = iwpal, (p). (B.54)

The important takeaway is that the time derivatives of the field operators commute in the same way —
up to a factor — as the operators themselves. We can now use (B.54) to evaluate the first of the kinetic
terms of Laqg,. Integrating by parts,

/ dp (afm (p)a®(p) — a"(p)a] , (p)> = / dp (ald(p)&“a(p) +a% (p)al . (p))
= [ (2el a2 0) + (1)l )

On the other hand, the second kinetic term vanishes because of commutation relations. Integrating by
parts again,

[ (ahaii®-p) =5 [ do (al )il p) + ol )il )

- ;/dp [aTad(P),dla(—P)] = ;/dp iwp[amd(p)vala(_p)] =0.

The same holds for the al a (p)at®@(—p) term giving

Ladss = / dp <ia2a(p)aad(29) + ;[aad(p)aala(p)]) — Hags; -

As promised, the two §(0) terms cancel and we are left with

Lads; = / dp (iald(p)dad(p) - wpald(p)a“d(p)) : (B.55)
Considering instead the contributions of Z* and P, an identical calculation would yield

Lov = [ dp (ieha )% 0) ~ pal (010 0) (B.56)
This is the end of the story for the bosonic fields. What about the fermions? The functional forms of f,
and hy will be decided when it comes time to diagonalise the Lagrangian in the same exact form as the

bosonic case. To this end, we need to evaluate

Ly = / do (101,00 + 01,0 + 20,00 — Zg/f o

2 ac 2 acx
ot aa Tooaa Ko aa RO taa (B.57)
RERU/AY/ e e/ AP/ B 57704&77 B 57704(177 )
and infer fp, hy. This time the inverse Fourier transforms of 0% and n*% are
ad( ) eiﬂ-/4 VWp do f* ead( ) h eTad( ) —ipo
a T,p) = _ T,0) — —p T,0 ) (& 5
X, fp — h—phs \/271'( P

prp PR (B.58)

_—in/4
t B e T N do " . _ i ipo
aad (7—7 p) - f—pf; o hiphp \/% (hfpaaa (7_7 0) f—peaa (T7 J)) e :
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The equal-7 anti-commutator for fermionic ladder operators is

. (f ’f* - o
ax T / = — Wt —1 o-+ip' o
{a <p)’ab5(p )} = V*prp (f* fp—hfph* \/ﬁ m romr
x ((—fipf_po{em(o), w( o)} + <—hfph’:p/>{e*ad<a>,ew«a’)})
(f— ’f*_ ) % % 710 ip'o’ /
= Wpp (F* fp —ph*) (Fipf—p +hph”, /\/% PeHPI (0 — o’)1
A o
= O ﬁp,f) (g + hoph 135855 [ dor emio 0y
(f— ’f - _p p) !

= VWpp ) fy— hph) (fpf—p +h_phtp,)5gagé(p—p')ﬂ.

At this point, it would make our lives much easier if we chose the mode decomposition of the fermionic
fields such that f, and hj, are real functions of p. In this case,

(f2,+h2,)
—ofp — h,ph)

Focusing on the %4 terms for example, we aim to calculate

{a* () a) ()} = 30303000 1)1
Lo = / dor (161,07 — 61,07 — 20,50°% + So/L,010%) = / doif! 6% — Hy,
The kinetic term of Ly is
/ do 0,0°" = / / on ﬁ \/Q;Tp (fpald(p) +h—paad(_p)> (fpfdad(p')+h—p'dT“"’(—p’)) o)
~ [ / @ m (fpaad<p> hopaas(-0)) (Fa® ) + byl (1)) 5(p )
J 0 2 (Fplal) + hopiaa-0)) (50 + il )
- / (p b0 0) + Waas "4 0)) + [ o T (L 00 ) + s ()07 )

p - (034 1) alai ) ~ Bliaar). " )

/ B2 (ol 01 () + s ()i )

and so, in anticipation of wanting the fermionic part of the Lagrangian to resemble (B.55) and (B.56), we
restrict our consideration to functions satisfying

fo=Ff-p  hp=—h_p,  fot+hl=wp (B.59)

In turn this simplifies the anti-commutation relation to the usual

{a(p). aj 5(p")} = 05055(p — )L (B.60)
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This way, the kinetic term [ do HZdéad can be integrated by parts as we did with the bosonic degrees of
freedom. We first need to find the commutation relations involving time derivatives of the field operators
just as we did in (B.51). The relevant fermionic Hamiltonian Hy has terms

/daaldgaa / /\/ﬂ f\/wiTp (fp af )+h—paaa(—p)> (fp/a“‘j‘(p’)+h,p/aT“d(—p’)) o' —p)
= [ o2 (sRala0)a ) + Waaap)a5w) + [ dp 22 (ol 9l () - aaa ()
p p

. d /o —im/2; . . ) ,
[aoorsts= [ar [ G [ G (500 o)) (o) + hopalylp) 70
D

— /dpw (f_paad(—p) + hpaT“O"(p)) (fpaaa(p) + h—pald(—P)>
/ L 2 (Faaa(=p)a () + foh—pa® (=p)al 4 (=) + folpa' ™ (p)aga(p) — hlals ()l (~p))
_ / P{f:p (al4()a™ (p) — aaa(p)a™(p)) - / dpw% (h2alq el (=p) + f2aaa()a™ (-p))

= [ a2 (20l )07 ) ~ fous o). 0" @)}) = [ o L (ol ) () + Faaap)a ()

Wp
/ : . : /
/ do gtasg!t, — ¢im/2 / / \/ﬂ (w;i ) (Fra @) + hoypa(=p)) (fpala(p) + hopaaa(-p)) 7@+
\% '

= [ o 2 (pal )+ 1y ) (ol (0) + hopiacs(—0))
- / - (Fpala(=P)al @) + fohopa!* (phaaa (=) + fohpa D)ala(p) — Hja" (P)aaa (1))
= [ 4P (010" 0) — 0 )al ) — [ o 2 (salar)al* ) + B ) ()

Wp
= [ an P (2] 0)a ) — a2 ).l ) — [ o 2 (Al ) + o ) ().

Wp

Adding the terms,

Hy = /da 040" + 5 (/ do 996!, — /da eTadejd>

= [ v (Faba @ @) + Baa )l 0) + [ dp P22 (ol 01" (=p) = 0 ) ()
# [y (Pt - P ) (o] o) - {aa%p),ald(p)})

Wp Wp

+ / I - (B = £7) aaa)a" (-p) + / Ao 5 (fp = 1) aba e (=)

-/ dp—(<f,, alar)o" 0) + 130 0). by () + [ dp P2 (20l () 0) 0% ). 0L )
+ [ o (ol =50 (5 = 13) ) (a0 (p)a®(p) = el p)a’* (-p))
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:/dpwlp(fp h2 + 26p fphp) al +/dp (h2 = kpfphp) {a"(p), al , (p)}
+ [ o - sk 5o (53 - )) (aaa< )% (~p) el (ol (-p))

To write the Hamiltonian in diagonal form, the last term should vanish. If we impose fg — h]% =1 along
with (B.59), this leads to

K _ DK
and
1+w
2 2 2 2 p
(fp = hp) + (fp +hp) =1+wp = fp:i\/T' (B.62)

The first integral gets a prefactor of

1 1
— (f2 = h2 + 2kpfphp) = — (1 +p?) = wp
Wp Wp

as desired. For definiteness, we can choose x = 1 and the positive root of f,. Thus, the fermionic mode
decomposition is (2.62) with the functions defined as

14+ wp P

fp= 5o = ?:fp2:1+h§:wp—h§, (B.63)
The Hamiltonian is now
Hy = / dpwpal . (p)a®(p) + / dpwlp (h2 = kpfphyp) {a(p),al ,(p)}.
The Heisenberg picture evolution is still given by
a(7,p) = i[Hg(r), a (7, p)]. (B.64)

Commutators are not useful with fermions so we will need to make use of the identity
[AB,C| = A{B,C} - {A,C}B

and the anti-commutation relations (B.60) to find

[azg(p')abg(p'), a"(p)] = “ZB -0 63585(p — p)a bB(p) = —a® (p')d(p — p').

Putting this to use, we get

() =1 [ ' a0 ). )

ot o)
=i [l a3 ) 4 [ ao (1wl ) (<o 60600 ) + o660 )
= —iwpa®®(p).
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Thus bosons and fermions satisfy the same evolution equation. We can now simplify the kinetic term:
_ o i .y i ifph— . ad
[ ariolaint = [ apiolo )i o)~ [ db Hitiaato) o)+ [ o T (ol )i () + s (-p)i )
= / dpial , (p)a®®(p) — / dp h2{aqe(p),a’ " (p)} + / dp fphyp (ald(p)amo‘(—p) —aaa(—p)dad‘(p)).

Notice the last integral vanishes since the operators commute while f,h, is odd in p. Subtracting from
the kinetic term the Hamiltonian,

Lo = / dp (iald(p)d“d(p) — wp ald(p)aad(p)> — / dp {hQ - wi (h2 — fﬂpfphp)] {a(p),a . (p)}.

P
But the functional forms (B.63) of hy and fp, imply

2 2 2 2
p p p 2 p 2
W2 —kpfphy =~ — L =P 192y = L = —h2w
p pt'p 4]% 9 4f§( p) 4]% p PP

so that the second term cancels. Finally, we get the desired form for one fermionic part of the Lagrangian:
Lo = [ dp (1] 0)% () ~ ol (0)a50)) (B.65)

Similarly,
Leta = / dp (ia],4(p)a* (1) — wpal 4 (p)a* (p)) (B.66)

Compiling the bosonic and fermionic parts we find the full Lo (2.65).

To derive the total momentum (2.71), we compute similar terms to before. For bosons,

[aopayei =1 [an [ 9 [ i) (ady ) — a0 (040 +ated () i
5 [vw(afatr) - aad<—p>) (a79) + al ()
- / dp p (@l ()2 (p) = aaa(=p)a” (p) + al, (p)a*(=p) — aga(—p)a!*(~p))

= —% / dp p (aid(p)aad(p) + aaa(p)am"’(p)> - % / dp p (ala(p)amd(—p) + aad(p)aaa(—p)> :

The second integral vanishes because the operators with opposite arguments commute while p is obviously
odd. So we are simply left with

[ o Py == [y alu@atiiv) - 5 [ v placale).a’ o)L

which features a divergence reflecting ordering ambiguity in quantisation. In the case of fermions,

/ do 0], 0% = / / T r %’WL (o0l ) + hoptaa(=p)) (Fa® (@) + hpyal®(=p) ) 7@ P)
~ [ o 2 (fpalat) + hpaaa(—0)) (Fpa®(0) + byl (1)
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=~ [ o (ol @)~ Boas s 0) + [ o2 (al0)al ) + s (-p)a" 1))

and once again the second integral vanishes (this time because the operators anti-commute and the
prefactor is even). Finally, using fg + h% = wp,

/ doig} oo — _ / dpp ol (p)a® (p) + / dp ph2{aes(p). a5 (p)}

where we can again ignore the divergent term. Similar expression holds for Z® and 1%, yielding (2.71).
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