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Abstract

The basics of nuclear physics and quantum many-body theory are covered with the goal of understanding
the IMSRG formalism of ab initio nuclear many-body theory. Sources of spurious isospin symmetry
breaking (ISB) in both post-Hartree-Fock IMSRG (2) and (3) truncations for a reduced orbital space
10 Minnesota reference were traced back to a problematic nested commutator [n(s), [n(s), 7%(0)]]. The
latter was reduced to an analytic sum which agreed with computational results. Asymmetric definitions
of the reference state, H°d(s) and A were found to spoil the isospin symmetry of the problematic term.
Using Mgller-Plesset partitioning of A in the White generator n(s) ~ 1/A or simply replacing the latter
with the imaginary time generator 7(s) ~ sgn(A) remedied the spurious ISB for symmetric reference and
offdiagonal definitions.
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1 Introduction

Since the 1950’s, we have been developing and refining the Standard Model of particle physics by chal-
lenging theoretical predictions with increasingly precise experimental data. One such prediction is the
unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The CKM matrix

’dw> Vud Vus Vub ‘ds>
|5W> =|Vaa Ve Vo |Ss>
’bw> Vcd Ws an ‘bs>

details the discrepancy between the weak and mass eigenstate representations of quark flavour change. In
particular, the matrix element V4 is of interest due to its major role in the unitarity condition

Vi + [Vis|2 + [Vip |2 = 0.9985(05) = 1,

where |Viq|? ~ 0.97373(31) [1, 2. In the context of nuclear 3 decay, the weak interaction is equally influ-
enced by the polar and axial vector terms, corresponding to Fermi and Gamow-Teller decay respectively.
If we consider 07 — 0T superallowed 3 Fermi decays, we can relate V4 to precisely measurable coupling
constants G and Gy as Vyq = Gy /Gr. We want to compare prediction to experiment while minimizing
both sides’ uncertainty.

There is a theoretical correction d¢o, to what was originally thought to be Gy, related to isospin
symmetry breaking (ISB). Isospin was introduced as a quantum number to treat protons and neutrons as
two sides of the same coin. Protons and neutrons are, however, different with respect to the Coulomb
interaction and pion exchange. This means the symmetry under isospin rotation (going from a proton to
a neutron or vice versa) is broken. The probability for an initial ¢ = 1 nuclear state [¢;) to transition to
a final state with raised or lowered isospin |1¢), e.g. via [ decay, is

IMa[2 = [ TE[) | = (1= 60) | (0| T+ |90 |* = 2(1 — 60),

where the states labeled [¢°) (in the isospin limit) respect isospin symmetry and are trivial to work
with. Improving the reliability of IMSRG computational methods in quantifying this d¢ correction was
the motivation for this research. We seek to identify and understand sources of spurious ISB, which does
not reflect any physical ISB.

In this text, we will cover some preliminary notions in nuclear physics and many-body quantum theory
before discussing the IMSRG framework and its implications for spurious ISB.



2 Nuclear Physics

This section takes from various courses on introductory nuclear physics [3-5]. Our first goal will be to
understand the internuclear potential and derive the nuclear shell model from using the mean field or
Hartree-Fock approximation. We will then review the basics of beta decay and isospin.

2.1 Nuclei properties

A nuclide $Xx with atomic number Z and nucleon number A is composed of Z protons and N = A — Z
neutrons. The (half-way charge density) radius R of most nuclei is represented by

R~ RyAs, (2.1)

where Ry = 1.2 x 1071 m is an experimentally determined constant. A is also the mass number of the
nuclide, since the proton and neutron both approximately have rest mass 1 u ~ 1.66 x 10727 kg (atomic
mass unit, defined as 1/12 the mass of '2C). All nuclei have approximately the same (nucleon) density
since

4 4 A
V= gwR3 = gngA = = const. (2.2)

Nuclides with same Z but different A are called isotopes. Those with same N but different A are called
1sotones and those with same A but different Z are called isobars.

Nucleons are fermions with spin s = 1/2 so that S? = h2s(s + 1) = 342/4 and 5% = hm, = +h/2.
Combining the orbital and spin angular momenta of all nucleons composing a nucleus gives the nuclear
spin I. When A is even [ is an integer, when A is odd [ is a half integer since the orbital angular momenta
are integer numbers and the spin of each nucleon is 1/2.

2.2 Binding energy and nuclear force

An atom’s mass is not equal to the sum of its constituent nucleons and electrons. This is because the
energy required to bind the nucleus is borrowed from the constituents as mass energy. The mass defect
Am associated with an atom $X with mass m(A, Z) = m(4 X) is

Am(A, Z) = Zmp + Zme + (A — Z)my —m(A, Z), (2.3)
where we can usually ignore the electron mass contributions. The binding energy is then
B(A,Z) = Am(A, Z)c. (2.4)

It’s always useful to know m, ~ 938.3 MeV/c? and m, =~ 939.6 MeV /c2. Usually Am/m = 0.01. The
binding energy B(A, Z) is the energy required to split the nucleus into its A constitutents. B increases
with A so it’s useful to refer to the binding energy per nucleon B/A.

Looking at Figure 1, we see that the binding energy per nucleon increases to a maximum of 8.6 MeV
around A = 60 and then decreases down to about 7.6 MeV. We see sharp peaks in B/A for ‘He, ®Be,
12¢, 160, 29Ne and 2*Mg. These are all multiples of the alpha particle 3He?" (Helium 4 nucleus), making
them more stable. We call the residual strong force between nucleons the nuclear force. From Figure 2
we see that the nuclear force is

e repulsive at very short ranges (< 1fm), keeping nucleons at average distance 2Ry,
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2.2 Binding energy and nuclear force
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Figure 1. Nuclei binding energy per nucleon as a function of the nuclei’s mass number A [6].

e attractive beyond this range and strong enough to overcome any Coulombic repulsion,

e short ranged to the order of Ry, nearest-neighour binding only = # bonds « A,

e charge independent, i.e. the same for p-p, n-n and p-n interactions,

e spin dependent and so is the binding energy.
A qualitative explanation of the B/A graph comes from the nuclear force. At low A, so for light nuclei,
all nucleons are close enough to one another to experience each other’s attractive nuclear force. Thus,

the energy required to separate the nucleus will increase with A as for every nucleon added the original
nucleons are now more tightly bound.
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Figure 2. Sketch of an internucleon potential with repulsive core and saturation [7].

Conversely, at high values of A, so for heavier nuclei, every nucleon interacts with equally many
neighbours since some are too far away. This is why, as A increases for heavy nuclei, B/A does not
increase. In fact, it decreases because simultaneously more protons are being added so that the longer-
ranged Coulomb force tends to repel nucleons from each other, making it easier to separate them and thus
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2 Nuclear Physics

decreasing B/A. This is know as saturation of the nuclear force.

The Coulombic proton repulsion does not affect B/A for smaller A because the nuclear energy is
about 50 times stronger at this distance (typical inter-nucleon distance). Of the approximately 2500
known nuclei, only 270 are stable with respect to nuclear decay. The heaviest stable nuclide with Z = N
is 280& and the heaviest of all stable nuclides is 208Pb Stable nuclei can only be found in the valley of
stability, between N = Z and N = 2Z. As A increases, it’s more likely that neutrons ‘stick’ to the nucleus
since they experience no Coulombic repuslsion, in contrast with protons. To summarise some key points

about the B/A vs A plot:

e Rising trend for low A due to nuclear bonds not being fully saturated.
e Increased stability for even-even nuclei due to pairing energy (consequence of 2.4).

e Slow decrease as A increases due to increasing effect of unsaturated Coulombic proton-proton re-
pulsion.

2.3 Shell model

Analogous to the electronic shell model for atoms, the nuclear shell model understands nucleons’ states
as assignments to certain energy levels, according to the quantum numbers determining the energy of the
nucleon

3
Enp = hw(2n + £+ 5) - V. (2.5)

These energies are those of a three-dimensional harmonic oscillator in a well of depth Vjj (by construction).
The shell model accurately predicts the magic numbers of nucleons, which corresponding to energetically
stable configurations of nuclei. This section covers the development of the model as outlined in [8]. To
construct this model we start with the Hamiltonian for a nucleus,

protons 2

(&
(| X = X5+ > ———. (2.6)
1<J 1<J |X’ o Xj‘

First, we treat the averaged field affecting each nucleon, whereby we can write the Hamiltonian as
neutrons protons

H= Z o + Z HP, (2.7)

2 2

. P: . N R P N N N N
HY = L 4+ VI (X HP = —E 4L VE (1X Fx 2.
j 2 + Vnuc(’ j’)7 k 2mp + Vnuc(‘ k‘) + VC(| k|)7 ( 8)

where f[j‘ is the Hamiltonian for the neutrons with mean field

nuc ZVHUC ’X X D (29>

1<j

and H ,S is the Hamiltonian for the proton with mean field

protons
Ve +VE =D Vaue1Xi = Xi) + D Ve Xi = Xil). (2.10)
1<k i<k
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2.3 Shell model

These mean fields (2.9) & (2.10) are the potentials felt by each nucleon as a result of interacting with
every other nucleon. In reality the fields affecting each nucleon depend on the others’ position, so are not
fixed.

We approximate the nucleon-nucleon interaction (see Figure 2) to be a smooth well of depth Vj, determined
by internuclear separation r, with an oscillator part!

?”2

Vnuc<r) ~ _%(1 - ﬁ)a

(2.11)
where R ~ 1.25A~1/3 is the familiar radius of a nucleus with mass number A (2.1). In the case of protons,
which are charged, one must also add to the Hamiltonian a Coulomb interaction term, where Z is the
atomic number

(Z—-1)e*r3  1?

R [5 B 232}
This is the Coulombic potential of a uniformly charged sphere, when standing inside the sphere. Of course
each proton only sees Z — 1 other protons. This means nucleons experience an effective or mean field

Vo(r) ~ (2.12)

Vo (Z- 1)e2> 3(Z—1)e? (2.13)

Veff(r):ﬁ(ﬁ* 2R2 —Wt+3

2 R
mw?r? — Vg,

=2
where the Coulombic interaction is not included in the neutron case.
Note the square well V] is shallower for protons and we define the oscillator frequencies as
(7 1).2 2
W2 = [2Vh (Z2 1)e?] /mpR*  for protons, (2.14)
2Vy/mu R for neutrons.

The energy levels of the nucleus are approximated as those of a 3D harmonic oscillator inside a well of
depth Vj.
3
ENzhw(N+§)—VO/. (2.15)

Had we solved the Schroédinger equation with the full radial equation, where the centrifugal term % l(lj;l)
must appear [10], the energies would be labeled by radial number n and orbital number ¢. Equating them
to the ones above gives N = 2n 4 £ where we know n = 0,1,..., £ = 0,1, ... and my = —/,...£ in integer
steps. In accordance with spectroscopic notation of the atomic orbitals, we denote £ = 0,1,2,3, ... as s, p,
d, f and so on.

The degeneracy of Ey is

> (21+1):%(N+1)(N+2) (2.16)
(=N,N-2,...

without including spin as a quantum number, and (N + 1)(V 4 2) if spin is included.
This model accurately predicts the preferred cumulative occupation numbers (magic numbers) of the

N = 0,1 and 2 shells but fails for higher N. This is because the present nucleon Hamiltonians ignore a
crucial detail.

L Another valid description of Vyuc is the Woods-Saxon potential [9].

-8 —



2 Nuclear Physics

Spin-orbit correction

The potential associated with spin-orbit coupling in the nuclear context is

1. . .
ﬁVSOL -S. (2.17)

Working in the eigenbasis of J2=12+824+2L-8 and L? and 52 we get

2
(L-8) = %[j(jJr 1) — 00+ 1) — s(s+ 1)]. (2.18)

Noting that j = |[£ — s|,...,£ + s in integer steps and s = %, we have j =+ % so that

Ver(r) + £Veo(r)  j=10+1/2,
Ve (r) — {Vefr(r) Chvr) G—e—1)2 (2.19)
We can choose Vgo(r) to be negative. The spatial dependence is not that important, what matters is that
the previously degenerate nf states are now split into nfj states. Those with ¢ and s aligned are have
higher energies than those with them anti-aligned. The energy difference is AF,, = %(% + 1) and these
two states form a doublet.
Using (2.16) and including spin, N = 0, 1,2 had degeneracies (possible number of states occupied for each
N) of 2,6 and 12 respectively. According to this simplified model, if all these shells were fully occupied,
the cumulative occupancy would be 20. If we thought the next magic number would appear at N = 3,
in agreement with the model without spin-orbit coupling, then the next magic number should be 40 since
N = 3 has 20 possible sublevels. Experiment tells us the next magic number is in fact 28. Why is this?

To find the new predicted magic numbers, let us look at the 0f; /5 sublevel (n =0, £ = 3, j = 7/2).

This orbital has energy ‘pushed down’ since the orbital and spin angular momenta of nucleons occupying
this state are aligned. In fact, its energy is so low that it breaks off from the N = 3 shell and forms a
shell of its own (Figure 3).
If you remember your angular momentum rules, you will know that m; can take 2j + 1 values, so 0fz/;
can be occupied by at most 2% + 1 = 8 nucleons. Adding this to the cumulative occupancy of the first
three N shells, we have retrieved the correct magic number. You can repeat this for 0gg/, which accounts
for the magic number 50 instead of 40.

[2, 8, 20, 28, 50, ]

Note that the shell model is almost the same for the proton and neutron cases. The specific ordering
of shells is determined by the various model parameters Vy, Vso, mnp, R. Since w depends on which
nucleon type we are considering (2.14), the spacing between energy levels is not the same in both cases.
In practice, we set both hw to the same value.

2.4 Nuclear spin and parity

In the extreme shell model, we assume that only the last unpaired nucleons dictate the properties of the
nucleus. A better approximation would be to consider all nucleons above a filled shell as contributors.
These are valence nucleons. Properties which are predicted by characteristics of valence nucleons include

e magnetic dipole moment,
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2 Nuclear Physics

e electric quadrupole moment,
e excited states,

e spin-parity.

In this subsection, we will briefly cover spin-parity continuing with [8]. For a more detailed discussion of
why certain states are not allowed (for example odd I) see Krane [4, Ch. 3.4]. The spatial parity of a
singe nucleon wavefunction is

Ut () = Ypej(—2) = (= 1) e (). (2.20)

As proton and neutron shells are filled, the nucleons of each type become paired off yielding s = |s; —sa| =
0 by the Pauli exclusion principle. This is because the s = 1 triplet is forbidden since the wavefunctions’
spatial part is symmetric, since each nucleon’s spatial wavefunction has parity (—1)5 and they reside in the
same ¢ orbital. (By separation of variables (2.7), we can write the combined wavefunction as the product
of single-nucleon wavefunctions.) There is a pairing force which lowers the energy of systems with paired
off nucleons.

Since nucleons get paired off, the total spin and parity of the nucleus is determined by the last

unpaired nucleons, which necessarily reside in the highest energy levels. A nucleus can have either one
valence proton, one valence neutron, or one of both unpaired.
The parity of the nucleus II is the product of the parity of each valence nucleon, e.g. (—1)®*fn if there
is one valence proton and one valence neutron. Let’s look at different cases for A even or odd. We will
label the spin-parity of a nucleus/nuclide with I where IT = & and I is the nuclear spin which is either
0, a positive integer or a positive half-integer.

A odd oe/eo

An odd-even nucleus as an odd number of neutrons and an even number of protons. For an even-odd
nucleus, it’s the other way around. In both cases, A is odd. This means the nuclear spin I must be a
half integer. This is because there will always be an unpaired nucleon which resides in a state nfj and we
have I = j which is a positive half integer.

For example, take 130; there is an unpaired neutron in Opy 3, so the overall parity is (—1)5n = —1.

The nuclear spin is simply j of the valence nucleon, I = j = % Therefore 130 has spin-parity %_. We
can find the spin-parity of any odd-A nuclide

e 70 has 1n° in 0d5/, = %Jr )
123

e 57Sb has 1p™ in Ogy/, = %Jr ,

e 29Si has 1n° in Iy = %+

As with most rules, there are some exceptions to how nucleons fill levels
e '21Sb has 1p* in 0ds/5 (instead of Og7/o) = %+ ,
o '§5Sn has 1p* in 1f; 5 (instead of Ohg/p) = I7 .

- 11 —



2.5 Beta decay

A even

If ee, all nucleons are paired off, meaning I = 0 and II = + always = 07.
If 00, there are only five stable nuclides; 2H, °Li, 1B, N and 2ggBi. Their spins are more complicated
to calculate. Recall the nuclear spin can take values I = |j, + jnl, ..., jp + Jn-

e Nuclei tend to have lowest spin = I ~ |j1 + jal.

e Valence nucleon spins tend to align = [ € Z.

Manipulating nuclear spin is the basis for magnetic resonance imagery (MRI).

2.5 Betadecay

Nuclides undergo beta decay when energetically favourable, i.e. when trending towards stable isobars
(nuclides with same A). There are two types of beta decay [4];

70’ = pt+e 47, gt :pt =0’ +et + v (2.21)
We often group electron capture with 87 decay as the reactions are so similar in nature.
p?+e” = n’ + tv. (2.22)

After 87, BT or electron capture, the mass number A is unchanged since Z — Z+1and N — N F1
so that A = Z 4+ N — A. Fermi allowed beta decays preserve the spin-parity of the parent nuclide. In
particular, super-allowed beta decays preserve the quantum mechanical wave-function up to the exchange
of a neutron for a proton or vice versa. This means the proton and neutron Fermi energies are nearly
identical [5].

2.6 Isospin

Motivated by the similarity of the proton and neutron with regard to mass and their relationship with
the nuclear force, a quantity was introduced by Heisenberg in 1932 to treat them as the same particle,
the nucleon, with two orientations of isospin t = 1/2 [4, 11]. This paper will follow the nuclear physics
convention of assigning isospin up to the neutron (¢, = +1/2) and down to the proton (t, = —1/2).
This choice is to ensure most nuclides have positive isospin projection 77, since most nuclides have more
neutrons than protons. So we assign

n’ 1 (t, = -l—%) isospin up , p' | (t. = f%) isospin down.

We can thus think of isospin rotation 7% as beta decay. Isospin has all the familiar angular momentum
properties

T2ty =ttt + )|t),  TF|t, t.) =Vt +1) —t.(t. £ 1)|t, t, £ 1),

Later on, we will be focusing on %O (see Figure 4) which has isospin ¢ = 1. Let’s see why that is.

If we acted on the |!40) ground state with T+, this would have the effect of raising the isospin of
each constitutent nucleon by 1 since T is the vector sum of the constituents’ isospin, only acting in their
Hilbert space.

ith nucleon
nucleons nucleons

Y T = Z I® 0T e -1 (2.23)
7
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2 Nuclear Physics

Od5/2
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p+ n®

Figure 4. The nuclear shell configuration of the ground state of 4O.

Every term in the sum acting on neutrons will vanish since there is no ¢, = 3/2 in ¢t = 1/2 representation.
Furthermore, every term in the sum acting on protons which occupy states symmetrically occupied by
neutrons will vanish since we cannot create a second fermion in the resulting state.

The only non-zero terms in 7F|40) concern the two protons in Op; /2. One application of T+ on |*0)
creates a superposition of states where either one of the protons is a neutron. A second application of T+
changes [1*0) to |*C) with both protons changed to neutrons. A third application would then yield 0.

Similarly, 7~ |1*O) = 0. We have thus confined |**0) to the ‘bottom’ triplet state t = 1, ¢, = —1.

0

t=1t,=+1) 2 T

t=1¢t, =0) T
MOy~ =16, =-1) J T

0 -

The matrix elements of T? acting on a two t = 1/2 particle Hilbert space can be found by looking at
1
T2 = (T7)* + §(T+T’ + T TH) = (TP +I1I1+TF 0T, +17 @ Ty (2.24)
= (TP RI+IR (T’ +II+2Tf T + T 0Ty +T; @ Ty

1 1
= ((Tf)2+§l)®I+I®((TQZ)Q+§I)+2Tf®T§+T1+®T2’~I—Tf®T2+J.

/

~ ] v
One-particle terms Two-particle terms

By taking the one-particle or two-particle matrix elements we can find

3

T = 20 (2.25)
1
Tin = 20k ® 0j1 + 0,7 ® 05,
—_—— ———

nucleon type not changed pte—nl

where the overlined state @ is identical to a but with the opposite t,.

~13 -



3 Quantum Many-Body Theory

This section will mainly follow Shavitt and Bartlett [12] and [13]. When considering quantum mechanical
problems with numerous independent particles, i.e. many-body problems, second quantisation provides
a method for representing operators and wavefunctions compactly, and thereby manipulating them more
efficiently. This is pertinent to ab initio nuclear theory, where a quantitative description of a collection of
nucleons is desired.

3.1 Second quantisation and Fock space

We assume the existence of a one-particle basis of wavefunctions {¢;} comprised of spinorbitals ¢;, such
that the basis is orthonormal. The unspecified number of basis functions generate Hilbert spaces for
N particles, for which basis states are tensor products of N spinorbital states (usually Hartree-Fock
wavefunctions). Because we will be dealing with nucleons, and hence fermionic states, we further assume
the N-particle states are anti-symmetrised Slater determinants made up of the ¢; functions.

Consider the representation of a normalised Slater determinant (SD) wavefunction for N particles

. ¢i511§ #j(w1) ... Zzgmg
.. i (T2 e (2
|G- @2) =ij...2) = Vi | (3.1)
We define the occupation number of the ith spinorbital in the SD as
~JO0 if ¢; not in the SD,
= {1 if ¢; is in the SD. (3:2)

The SD itself, and operators acting on it, are represented in terms of creation and annihilation operators
d;r, a; or 11,7 if there is no ambiguity in notation. They are defined by their action on the SD wacuum |0)

a0y =0, al---alo) =li..z). (3.3)

In order to comply with the anti-symmetry of states with respect to an exchange of fermions, namely
|pg) = —|gp) from (3.1), these operators satisfy

[, d;] + = Opg: (3.4)

where [A4, BLr = AB + BA is the anti-commutator. In particular, agli...k...z) and &ZH ...z) are found

using (3.3) & (3.4). We say that the creation operator d;r; creates a particle in the single-particle state

¢p while the annihilation operator a, destroys it. This is a statement that for all N € N, the N-body
wavefunction can be generated by an application of N independent operators to a unique vacuum state.
Based on (3.3) & (3.4), a definition of the Fock space F can be laid out:

o FN =span{lij...ix) = al "-djl 0)} considering all sets of N states in a basis B = {¢;}.

tN

o F=@PyenF N where N is still the number of particles occupying non-vacuum states.
° [p) e F = |§) = Zz‘eB fili) + Zm‘g]g 913‘”) + Zi,j,keB hzgk‘”’“) + .

— 14 —



3 Quantum Many-Body Theory

a a a a
Cl]L Cl]L CLT

Our immediate goal is to express many-body operators in terms of creation and annihilation operators. To
this end, it is convenient to expand the operators in representations of eigenstates of their single-particle
counterpart and then transform to an arbitrary basis. So, we have to specify how to change between single
particle bases, {¢;} — {¢;} and how this affects the ladder operators algebra {a;}.

For complete sets of states {¢;} and {¢;}, T = 3,|i)(i| = 33]i)(i| so we get, by action on the vacuum

state
al =Y diliyal = a; =" (ili)a. (3.5)
7 %

Alternatively, if one set of states is continuous, e.g. the position basis |z), I = [ dz|z)(z| so that

o — / dr Giln)a(z),  a@) =3 (ali)as (3.6)

i

In the case of a finite position space, for example x € [0, L], the momentum is discretised and the position
and momentum bases are related by Fourier transform [14, pg. 103].

Symmetric one-body (1B) operators O acting in an N-particle Hilbert space FV take the form

N
Or =Y o, (3.7)
~ i=1
where 6, =1 ® --- ® 0, ® - - - ® I acts exclusively in the ith particle’s Hilbert space. For example, the total
kinetic energy operator T' = Y, P?/2m; and the total spin operator § = 3. ;. Define the (occupation,)

ith position

number operator Ny = di\&)\ such that
Ny(@h)™0) = n(@l)"0), or  NyAr.An) = nalAr AN (3.8)

This can be seen using the relation &A&KN =0y — aLNd,\, SO

(@han)al, - al 10) = Sany M- AN) + gy ALAN) + o+ San A An) (3.9)
+(-1)Nakal , ---a},ax0)
N
= (Z 5)\)\i)‘)\1-~)\N> = n)\‘)\l...)\]v>.
=1

Consider O; with single-particle equivalent 6 where |A;) are the orthonormal eigenvectors of 6 with eigen-
values o;.

N
(N ANI01 AL AN) = (N Xy ] D on A An) = (VA maoa|ArAn), (3.10)
=1 A
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3.2 Particle-hole formulation

which holds for all sets of N states {\;}, We obtain the second quantisation representation
O1 =) 0xNx =Y _(Ao|A)alan. (3.11)
A A

By transforming to a general basis {u} using (3.5) (not necessarily eigenbasis of 6), we get

Oy =Y (ulolv)d}a. (3.12)
72
Formally, O; scatters a particle from state |v) to a state |) with probability |(u|6]v)|2. For example take
a collection of spin-1/2 particles, then the ith particle’s spin operator in the spin state basis {1,/} can be
represented with the Pauli matrices
A h h

Si=y0 = 5=5(0"), s =8+ =n(Q) (3.13)

This means the total spin operator of a collection of fermions can be rewritten [13]

A (3.12) e . N h A KR
S = Z aiasaa/a/\a/ — SZ = 5 Z}\:NAT — N)\\b S+ = hE}\:a&TQ)“L’ (314)

Aaa!

where o, o’ can take values 1, ] and X represents the rest of the quantum numbers describing the system
(e.g. position, orbital angular momentum). Clearly S? counts the net spin projection and S* destroys
particles in the spin-down before subsequently creating them in the spin-up state.

Similarly, we can derive the second quantisation representation of symmetric two-nucleon operators

N N
A . 1 . 1 . At
O = E O = 5 g Oy = = 5 g <pq|0]rs>a;aj]asar. (3.15)

pu<v u#tv pqrs

For example, if we consider the Hamiltonian describing a nucleus (and ignore the 3N force), we could
write it as a sum of the free nucleon Hamiltonians h; = Pf /2m; and the interaction terms 0;5. Here, we
sum over all nucleons
N 1
H:Zhi—{—Q;@ij, (3.16)
7 1#]

or, in second quantised form, where the summation indices now refer to a basis of single nucleon spinorbitals

. . 1 RO
H= Z hpquq + 3 Z qumquTsr. (3.17)
Pq

pgrs

3.2 Particle-hole formulation

Because nucleons fill up energy levels progressively (see 2.3), it will be convenient to define a reference
state |®p) in which the nucleus is in its ground state. This means there is an energy below which all proton
states are filled, and an equivalent energy for neutrons. We can think of these as Fermi energies and thus
think of our fixed reference state |®g) as the Fermi vacuum. All spinorbitals which are occupied/filled
in the reference are called hole states and, conversely, those which are vacant/empty in the reference are
called particle states. From now on, to indicate hole states we will use indices i, j, k, ....and particle states
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3 Quantum Many-Body Theory

0d5/2

Figure 5. An O reference |®g) being excited

Op1/2 —@—Q@— _(l‘_‘_ to a possible double excitation |<I>§‘JI?>. The Op; /2

/) state was originally a hole state for protons but

Ops /2 —”“— _’:,V:,".“— a particle state for neutrons. Only excitations

which conserve spin-parity I'' are physically al-

0s1/2 —@Q—Q— lowed.

p+ n®

will be labelled with a, b, ¢, .... To refer to any generic spinorbital, we will use p, q, 7, s, .... Reflecting how
it would be unphysical to create a particle in an occupied fermionic state, or destroy a particle in an
empty one, we can use the commutation relations to show

i'|®o) = a|®o) =0,  (Poli = (Pola’ = 0. (3.18)

Because a' has the effect of ‘displacing’ one particle, it is the basis for one-body (1B) operators. Similarly,
atbiji is a 2B operator and so on. This is known as the operator’s particle rank. We define other SDs
relative to the reference by super/subscripting the change

|D¢) = aTi|dg) (single excitation), (3.19)
\CDE% = a'bTj1|®g) (double excitation),
|®;) = i|®g) (nucleon removal),
|®) = aT| D) (nucleon attachment).
The commutation relations (3.4) also mean that ij = —ji so that
257 = —|@57) = [@57) = —|@37). (3.20)

Together with (3.19), they lead to orthonormality of this basis of SDs, i.e.
(Bo|DY) = (Dp|0L) =...=0,  (DY|D) = §iiduar, . (3.21)

The energy of some reference state |®g) = |ijk...n) can be computed by using (3.17)

Ey = (@0 H|®o) (3:22)
. R 1 . T
= Z hpgigk...n|ptdlijk..n) + 3 Zqurs<zyk...n\quT5T\2jk...n>
pq pqrs

—n 1 R N
=" hylijk..n|l'|ijk..n) + 3 > vpm(igk..n|lTmlmllijk...n)
l I#£m

1 .. o ~ ’\/\ ..
+ 2 g: Vit (i5k..n [Tl I ijk..n).
m

We get to this step for the first term by noticing that p # ¢ leads to zero by orthonormality, and that only
hole states have non-vanishing occupation numbers . For the second term, we employ similar arguments
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3.3 Normal ordering

but we also have two distinct ways of ending up with the same bra and ket by left action of the creation
operators and right action of the annihilation operators respectively. The cases are when § and p are
the same or when § and § are the same. (Of course, we sum over | # m since a nucleon state cannot
be destroyed twice.) Since we are summing over all spinorbitals, both cases appear. Noticing that
IT1|®0) = |®y) by definition of a hole state, and that Il = —lmml,

1 .
Ey=> hu+ 5 > (imld[im)a. (3.23)
l l#m

We denote the anti-symmetrised matriz element by? {(Im|o|lm)x = (Im|o|lm) — (Im|6|ml). All opera-
tor matrix elements will be anti-symmetrised going forward (except of course for single-particle matrix
elements).

3.3 Normal ordering

To make use of our starting point, the reference state, we have found a compact way to write SDs by
treating them as deviations. We will now work toward accomplishing the same thing for second-quantised
operators.

A string of creation and/or annihilation operators is said to be normal ordered with respect to a
reference state if all operators which destroy the state (e.g. i, a) are to the right of all those which do not
(e.g. i, a). In the case of the physical vacuum state |0), a string of operators would be normal ordered
if all annihilation operators were to the right. We denote a string of normal ordered operators by curly
brackets® {---}. According to Wick’s theorem, we could equivalently define normal ordering with respect
to |®g) as

{(pqt- 37} = plgh--- 87 — (o[p'q" - - - 57(Po). (3.24)
This would of course imply (®q|{p'G" - - - 57}|®g) = 0 as desired. The reference state expectation value of
a pair of creation and/or annihilation operators is called a (Wick) contraction

PG = (Do|p'q®o) = p'g — {p'q} (3.25)

—

At A r.
The only non-zero contractions are then iTj = ;5 and abt = .
We are now ready to write operators relative to the reference. For example, we can write the intrinsic
A-nucleon Hamiltonian, this time including both the NN and 3N forces [15, Ch. 10|

. L. 1&. & N
H:(l—A);hi—i-A;hij‘f';vij‘f'i;kvijka (3.26)
where the nucleon 1B and 2B kinetic energy terms are

hi = P2/2m, hij = —P; - Pj/m. (3.27)

Now we can normal order H with respect to the a reference |®g). We get

- A 1 UV 1 Aparsa A
H=Ey,+ § FoalD'd} + 1 § Tpgrs {14757} + %6 § Wiiktmn {115 kTRl }, (3.28)
pq

pqrs igklmn

2Sometimes also written as (Im||lm) when referring to the Hamiltonian two-body potential.
3Somtimes denoted with colons : - - - :
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3 Quantum Many-Body Theory

where Eg = (@0\1:[ |®g) is the reference state energy and fuq, I'pgrs and Wijkimy are anti-symmetrised ma-
trix elements which can be found using (3.12) & (3.24) and comparing (3.26) to (3.28). These expressions
are in [15, Ch. 10]. We have learned how to go from operators (acting in a particle’s Hilbert space) to
second-quantised operators (acting in a Fock space) to normal ordered second-quantised operators.

H= Z hpgP 4+ 5> Vogrsh'q' 87 + ... = Eo + Z foadP'a} + = Z Tprs{p'qlar} + .. (3.29)

pgars qu’S

3.4 Wick’s theorem

See [15, Ch.10] for a full treatment of this subsection. The statement of Wick’s theorem is that, using
(3.4) and (3.24), one can recursively find

pleplan g ={pl - plan - ai} (3.30)
+pLadpy -+ plyan -+~ do} = Plaa{ph -+ Plydn -+ a1} + singles
S S S SN SN I -
+ (P1q1P%d2 — P d2p5d1 ) {Py - - - PN - - - g3} + doubles
+ ...+ full contractions,
where singles and doubles refer to the number of contractions in a term. Two important consquences
follow by inductive reasoning, starting from (3.24)

{p'q-y=—{-ap"}, (3.31)
(Dol{p'd" - - 37} Po) = 0. (3.32)

A less immediate consequence is related to the commutator of normal ordered operators. Take A with
particle rank M and B with particle rank NV, then

[A[M},B[qu Yy oM, (3.33)

which gives a sum of different kB operators CH,

3.5 Hartree-Fock equation

While deriving the shell model in 2.3, we employed the idea of a mean field experienced by each nucleon.
This concept stems from Hartree-Fock theory, where we rearrange the Hamiltonian as follows [5, 12]. We
can write

H =3 hpgd'd+ 5 D (palolrs)ap'd'ss = F + V. (3.34)

Pq pqrs

We define the Fock operator F in terms of an auxiliary 1B operator U.

F=Y fop'g=) hpp'q+U. (3.35)
pq

The residual interaction must then be

V== Z (pq|0|rs)ap fgter — U. (3.36)
pqrs
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3.6 Hamiltonian partitioning

In essence, F is the sum of the 1B Hamiltonians each with a mean field to be expressed by U.
U= Z“pqﬁqv Upg = Z(Pilﬁ\qim (3.37)
Pq i

You can see that the matrix element u,, is a sum over all hole states, giving us an average of the fields
exerted by all other nucleons present. (Since |¢gi) = 0 whenever ¢ = i.) This is exactly what we had
n (2.9) & (2.10). We can diagonalise ' and find the Hartree-Fock eigenbasis {a} such that we get the
Hartree-Fock equation

£abap = hap + (i8] i), (3.38)

and e, is the Hartree-Fock single-particle energy of the spinorbital ¢,. Note that the Hartree-Fock ground
state energy is then the sum of all hole state energies. The HF eigenfunctions ¢, () = (x|«) are expanded
in terms of some basis, for example the harmonic oscillator. We are seeking solutions to (3.38) of the form

o) = ZCJ‘?‘U), Fla) = eqla). (3.39)

This eventually yields the iterative self-consistency solution

holes

Fig =hgp + > (C) (jrlo]ig2)aC- (3.40)
B Jij2
The 1B part of the original Hamiltonian h is just the kinetic energy of a single nucleon. The 2B part ©

contains the NN interaction and the exchange force. We can express (3.38) in position space as

h

2
—5 — V2o () + Uda() = cadalx). (3.41)

The mean field potential U is defined by its action on spinorbitals ¢,

U pal@) = tr1da(z) — / @t (@, ) o (). (3.42)

We have introduced the Hartree and Fock potentials 951 and op

holes

oy = Z /dgr'qbﬁ (', z)pp(x), (3.43)

holes

o = Z% (a,2)d5(x), (3.44)

corresponding to the internucleon interaction and exchange force respectively.

3.6 Hamiltonian partitioning

In perturbatlon theory, we consider the Hamiltonian to be split up into the unperturbed or zero-order
Hamiltonian Hy and a perturbation AV where A < 1. This is what is meant by partitioning the Hamil-
tonian;

H = Hy+ \V. (3.45)
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3 Quantum Many-Body Theory

We usually know the spectrum of H,

Ho[n©y = EO)p©)y, (3.46)

We want to solve H|n) = E,|n). By expanding E, and |n) in orders of A
E,=EY + \EW + X2E® 4 (3.47)
In) = ‘n(0)> + )\|n(1)> + )\2|n(2)> + ... (3.48)

By comparing terms with the same degree in A\, we find

E® =Y [Vam|® (3.49)
n E'r(LO) . Eﬁg) ’

m#n

This kind of energy denominator A ~ Eﬁo) — E,S‘J) shows up in perturbation theory. As we can see the

definition of A relies on the spectrum of ﬁo, and so depends on how we partition the Hamiltonian.
Moller-Plesset partitioning
We can impose Hy = Zp epp!P in some single-particle basis {¢;}. Using (3.4) we get

Holrst..) = (e, +es+er+...)|rst...), (3.50)

which tells us that the spectrum of Hy is any SD |rst...) made up of spinorbitals {¢;}. If the reference
is |®g) = |jk...n), then

Hol®o) = E|®y), EQ =¢itent...ten= & (3.51)

Note Ey # Eéo). In fact, Ey = (E(()O) + >, hii)/2 using (3.23). For any other SD ]@%b>, we then have

Hol @2y = (B 4 ea+ep+...—er—ej—...) @), (3.52)
In canonical Hartree-Fock theory, the 1B part of the normal ordered Hamiltonian (3.28) satisfies fp, =
€plOpg. This yields
Hol®) = (B + faa + fon oo = i = fi5 = - )|O), (3.53)
which is often referred to as Moller-Plesset (MP) partitioning where Hy is the diagonal part of F in (3.35).
Epstein-Nesbet partitioning

Other partitionings of the Hamiltonian can also be used. In particular, the diagonal part of the Hamil-
tonian in any convenient Hilber-space representation can be used as the zero-order Hamiltonian. For a
generic basis {®;},

Hy = Z’¢i><@i‘ﬁ’®i><@z“ = ZHM‘I%)(‘I%\- (3.54)

In this way, any state is an eigenstate of Hy with eigenvalue its energy. This is known as FEpstein-Nesbet
(EN) partitioning and leads to perturbation expansions in which the A denominators contain differences
of diagonal matrix elements of the full Hamiltonian, i.e. H;; — Hgg. Unlike MP partitioning which deals
with traces of matrices over hole states, the EN partitioning is not invariant under unitary transformation
among particle and hole states.
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3.7 Diagrammatic notation

3.7 Diagrammatic notation

To help generate and manipulate second-quantised expressions, in particular normal ordered ones, we
will introduce diagrammatic notation. This section will only cover rules of interpretation for one-particle
operators as found in [12, Ch. 4]. In quantum mechanics, there is a ‘time sequence’ to the application of
operators (right-to-left). In diagrams this sequence is down-to-up

1

As previously mentioned, the reference state |®¢) is the Fermi vacuum. It is represented by nothing:

Slater determinants

Dy = (3.55)

All other Slater determinants are represented by directed vertical or diagonal lines. particles point upwards
and holes point downards. For example

Pl = a o= yha jYAD (3.56)

where bras and kets are specified by double lines above or below the diagram respectively. This is muted
when taking the reference expectation value.

|F) = {ali}|@o) = a (3.57)

One-body operators

Take for example (b|i|a){b'a}, we indicate with a marker (here a cross with dashes) the multiplicative
factor (b|@i|a). The original ket |®%) becomes |®?) following the action of a normal ordered 1B operator
Ux at the vertex. The mnemonics OCB and IAK detail how to label the matrix elements with respect to
hole/particle arrows.

0 (bli|a)

|<I>f’) b J ¥ Vs out—crcati(())n(—:bra
B
1 'Q_X -X (OCB) (3.58)
|<D?> a vertex a A= in—annihil?ltligﬁ-)ket

Ny
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3 Quantum Many-Body Theory

In general we can represent normal ordered one-body operators as

Ux =Y (plilg){p'q}

pq
b .
N A
=Y X- . +Y 0 %- ., (3.59)
ab ia
a

whereas the full operator must also include the ‘bubble’

U = On + (B0 U|Pg) = On + Y X---Oi . (3.60)

A diagram in (3.59) is to be contracted i 1n all valid ways in which states above and below interact. The

only non-zero contractions ZT J = d;; and abJr = {4p are represented as
| = 0ij, | = Oab- (3.61)

To learn more about Hugenholtz diagrams and anti-symmetrised Goldstone diagrams see the rest of [12,
Ch. 4].
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4 IMSRG Formalism

To simplify ab initio many-body calculations, we want to decouple physics at different scales of energy by
block-diagonalising the Hamiltonian with respect to a reference. The IMSRG formalism provides a way
to systematically improve such techniques. This section is primarily taken from [16] and [15, Ch. 10].

4.1 Flow equation

Suppose we have a many-body system in some state |¢), then the eigenvalue problem to find that system’s
spectrum is posed by the time-independent Schrédinger equation, omitting hats on operators

Hl|y) = EY). (4.1)

We want to use a unitary similarity transformation (hence the name similarity renormalisation group) so
that
H(s) = U(s)H(0)UT(s), (4.2)

which is parametrised by the flow parameter s. We choose a reference |®g) (see 3.2) which is our ini-
tial guess of the exact ground state energy eigenket. Alternatively, we could think of the exact states
transforming as

[) = lim UT(s)|®o), (4.3)

§—00

analogously to the Schroodinger /Heisenberg pictures for time evolution of a quantum-mechanical system.
We are transforming a non-vacuum, so a medium reference state (hence the name in-medium as opposed

to in-vacuo). Consistency requires
U)=UN0)=1,  (Do|H(0)|D0o) = Ey, (4.4)

lim (@o|H(s)|@o) = lim (Do|U(s)H (0)U'(s)|®0) = (¢|H(0)|¢)) = E.
We can freely impose the following condition on the unitary operator U (s)

d unitarity d
—_—

.U (s) =n(s)U(s)

such that we obtain the SRG flow equation for the transformed Hamiltonian by the product rule

U'l(s) = =U'(s)n(s), (4.6)

ds

SH(s) = n(s), H(s)) (1.7)
We call n(s) the generator of the flow since it determines the behaviour of U(s) and thus of the transfor-
mation itself. We choose 7(s) so that

H(s) = H(s) + H*(s) "= HY(s), (4.8)

where H(s) is ‘diagonal’ in the core. Usually the core is the collection of states occupied in the reference
but not always. We will call ezcluded the states which are excitations from the core. This is convenient,
because it becomes easy to read off E via
lim (®g|H (s)|®o) = lim (g|H(s)|®g) = E. (4.9)
S$—00 S$—00
When we say the Hamiltonian becomes diagonal in the state |®(), we mean for all non-trivial particle-hole
pairs
. ab...
Tim (| H (s)| 8£2)

0. (4.10)
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4 IMSRG Formalism

Do) [@F) (D) [DEE)... Do) [@F) D) DI
> >
bl bl
Sa 52
Lol s—oo ©
—
2 23>
bl Lol
: (i[ H(0)[7) ; (i] H(00)]J)

Figure 6. As s — oo, the Hamiltonian becomes block-diagonal, i.e. the reference state decouples from
any particle-hole excitation. There are no restrictions on the block connecting excitations.

If we think of a schematic, finite matrix representation of the Hamiltonians, this decoupling becomes
clearer.

If no reference state is given, convention tells us to use the true vacuum as the free-space reference
state. The number after IMSRG’ indicates the particle rank after which we truncate the induced normal

ordered operators at each calculation. For example, when evaluating an operator commutator {fl, B} =C
or product AB=C ;
IMSRG (2)

A A N 1 tatany 1 ottt
C = (99|C|Pg) + Z Xp{0Tq} + 1 Z Y},qrs{quTsr}—i-% Z Znnpgrs i TATpTE7RGY + .. (4.11)

pq pgrs mnpqrs

IMSRG (3)
As seen in (3.33), a KB and LB operator commute to give a sum of MB operators
[K,L] - M, (4.12)

for |[K — L| < M < K+ L — 1. For a simple product of operators that range is |K — L| < M < K + L.
If we sum over N states during the matrix multiplication, the product’s spatial complexity would scale
as NEFL+HM  For IMSRG (3) we have M < 3 so that [2,2] — 3, [2,3] — 3 and [3,3] — 3 are all possible
commutator scenarios. We usually use shell model spinorbitals with N > 20 so the scalings N7, N® and
N? differ significantly [17].

To limit computational cost while maintaining the increased accuracy, we will also use IMSRG (3n7)
which limits the surviving 3B operators of IMSRG (3) to commutator and product diagram topologies
corresponding to O(N7).

4.2 Magnus formulation
One choice of unitary transformation is defined by the Magnus formulation [18],

U(s) = ™). (4.13)
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4.3 Choice of generator 7(s)

Unitarity of U(s) implies that the Magnus operator satisfies Qf(s) = —Q(s). From (4.6), we get the ‘flow
equation’ for Q(s) [18]

Lo =3 Zrein). (4.14)

n=0

where B,, are the Bernoulli numbers and cf, are nested commutators

colm)=n,  ca(n) = [Qcq ()] (4.15)
Operators evolve as O(s) = e (0)e?5) where
O(s) = O(0) + %[Q(s), 0(0)] + %[9(5), [Q(s),0(0)]] + ... (4.16)

We can numerically evolve Q(s) using (4.14)and subsequently apply (4.16) to transform any operator
along the IMSRG flow.
4.3 Choice of generator 7)(s)

Following [16], we saw in 4.1 that we want to decouple the reference by suppressing the offdiagonal part
of the Hamiltonian, H°?. But we still have the freedom to chose 1(s) as long as it drives H°d(s) — 0
along the flow. Two appropriate generators for the single reference case are the White generator and the
imaginary time generator.

White generator

We start by reminding ourselves of the definition of H°d. It connects the references to excitations and so
has the form

At 1 APt an 1 ATTE AT AN
Hed = Z fm{aTz} + 1 Zfabij{aTijz} + 36 Z Wabcijk{aTchTka}. (4.17)
ai abij abcijk

The White generator is defined as

od(s)
= 4.1
n(s) =" (4.13)
fai Ats 1 Fabij A7t on 1 ”abcijk AT AT AN
= E 75 Z rqth — E PRk
s i 4 abij Rabij v 36 abeijk Aabeijh e,

where we meet our old friend the energy denominator A (3.6). The operators f, I' and W all flow with s
and so does A. Up to particle rank of 2, with MP partitioning Ay ;... is defined as

Aai = faa - fm + Faiaia (4'19)
Aavij = faa + fob + Lavab — fii — fij — Lijij (4.20)
— Laiai — Uojoj — Lajaj — Dbibis

Using EN partitioning the denominator matrix elements are
Agi = (DF|H|®Y) — By = (Do|{iTa}H{a"i}|®o) — Eo, (4.21)
Agpij = (P§F|H|DE) — Eo = (ol {i"jTab} H{albTij}|®o) — Eo. (4.22)
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4 IMSRG Formalism

Imaginary time generator

The imaginary time (IT) generator is instead defined as

HOd(S)
= 4.23
AFs 1 AtTEAS
— Z sgn(Aai)fai{aTz} + 1 Z sgn(Aabij)Pabij{aTijz} +.... (4.24)
ai abij
in terms of the sign of A;
+1 A >0,
sgn(A) = {_1 A<0 (4.25)

Here we note the sensitivity of the flow on energy level separation for both the White and I'T generators.
If the orbital energy spacings are not far enough, 7(s) ~ H°? will not be suppressed due to a small energy
denominator A and the flow will diverge away from the targeted decoupling.
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5 Spurious Isospin Symmetry Breaking

Since (T?) is misbehaved, by looking at Figure 7, and T? ~ (TTT~ +T~T%) it was evident that the code
at the start of the project could not accurately handle calculations regarding (T'F) and thus d¢. Since d¢ is
of the order 1%][1], we should try to have a firm understanding of all sources of isospin symmetry breaking
in the IMSRG++(19], and try to control them. Throughout this section, we will seek to specifically
understand sources of spurious ISB, which is just ISB arising even though it is not predicted (due to
approximations in the Hamiltonian, for example).

5.1 Evidence for spurious ISB

As mentioned in section 1, we seek a framework with which to compute d¢. In particular, it should reliably
handle calculations involving (72) and thus (TF). This means that if there were no a priori sources of
ISB, i.e. we introduce a nuclear potential faithful to the description of the shell model while including no
Coulombic interaction and no pion-exchange mass or abundance difference, isospin symmetry should be
observed.

A candidate for such a non-Coulombic attractive potential is the Minnesota potential, which is the sum
of two inverted Gaussians. Looking at Figure 7, S. Stroberg’s IMSRG++ code for a %O post-Hartree-Fock
Minnesota reference state found that, as the flow parameter tends to infinity, the isospin does not converge
as expected. There are 8 protons and 6 neutrons in **O. The net isospin of the nucleus is t = 1 as seen
in section 2.6. But the expectation value of T2 did not converge to a perfect (T2) = t(t + 1) = 2 with
the IMSRG flow. After extending the IMSRG truncation to IMSRG(3), the error (lims oo (T?(s)) — 2)
actually grew instead of being reduced (see Figure 8).

ISB with O HF Minnesota reference, emax =3

2.0175
—— IMSRG(2) A
2.0150 1§ IMSRG(3n7) | &
= 80
2.01251 | 2
~~ | o
3 201001 &~ 604
\ ~
o %6}
2.00751 \ =
& \ T 401
2.0050 =
2.0025 1 = 0| E 2
. 3
2.0000 Z 01
00 25 50 7.5 10.0 125 15.0 17.5 20.0 00 25 50 7.5 10.0 125 15.0 17.5 20.0
) )

Figure 7. Isospin symmetry is broken under S. Stroberg’s IMSRG flow of *O HF Minnesota potential
reference state. (Left) The isospin (T2(s)) should trend to 2 as s — oo and (Right) the two-body part of

the commutator [H(s),T?(s)] should be identically 0 if 72 is conserved. Presented at [20], reproduced
here.

5.2 Sources of spurious ISB

Figure 7 had numerical parameters hw=16 (MeV) and cLS=-5.00. From now on we will set hw=25, cLS=-
10.00 to prevent the inversion of energy levels in our toy model. Going back to 2.3, we can express the
reference as a linear combination of harmonic oscillator eigenstates with quantum number N. Because it’s
impossible to store infinitely many states on a computer, we truncate the basis at N = 2n+ ¢ < epax. In
parallel to my work, Jonathan Riess investigated the epax truncation’s contribution to the ISB. He found
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5 Spurious Isospin Symmetry Breaking

that it did not account for most of the error. (This truncation was not expected to break isospin since it
does not discriminate between pt and n° energy levels.)

Continuing with the same 4O reference, after finding that the error did not significantly depend on
the energy level spacing hAw either, the importance of orbital population was investigated. It was found
that for certain orbital spaces, i.e. depending on which shells are included in the model space of the
nucleus, there was a much greater lack of convergence to 2 (Figure 8). At the IMSRG(2) approximation,
when the model space was reduced to the Ops s, Op1/2 and 0ds /5 energy shells, the error was acute relative
to the full eqax = 3 model space for 10,

ISB with 'O HF Minnesota reference, emax =3 Reduced orbital space (0s Op 1p), IMSRG(2)

2.008 - —e— IMSRG (2) —— emux=3

2.007 - IMSRG (3n7) reduced+0d

2.006 —*— IMSRG(3) —e— reduced+0d+1s
2 2.005 --0-- reduced+0d+1s+0f
N@/ 2.004 1 —e— reduced-1p
< 5003 —e— reduced-1p+0d

2.002 A

2.001 A ey

2.000 A @8

00 25 50 7.5 100 125 150 175 00 25 50 75 100 125 150 175

SRG flow parameter s

Figure 8. (Left) IMSRG truncation is relaxed yet the error in (T?(cc)) does not decrease.
(Right) Different orbital spaces display different convergence behaviours.

The Hartree Fock diagonalisation step (3.40) is responsible for the ISB at s = 0. This is because we
express T2 as normal ordered with respect to a HF eigenstate, for which protons and neutrons see a
different mean field since there are more protons than neutrons in the reference. Because of the overlap
integrals in (3.42), this immediate ISB only occurs when N # Z and there are orbitals with same ¢ but
different n quantum numbers .

Hoping to track what caused the error in the unrestricted case, an investigation into the source of
error in the Opg/s, Opy/2, 0ds/2 model space was warranted. To pinpoint the source of error even further,
the cumulative sum (4.16) in the Magnus evolution of (T?) was evaluated term by term as in Figure
9. It indicated that the source of isospin symmetry breaking was the third term in (4.16); the nested
commutator

([Q(s), [Q(s), T%(0)]]). (5.1)

But we were using the White generator (see 4.3),

od
n(s) = HA = lim 7n(s) =0. (5.2)

S$—00

Looking at (4.14) with n small, we make the approximation {2 ~ 7 and expand (5.1) explicitly

([n(s), [n(s), T*(0)]]) = (ol (n*()T*(0) — 2n(s)T*(0)n(s) + T*(0)7"(s))|®o), (5:3)

4For 0O reduced orbitals in Figure 8 there are several ‘echelons’ of HF mixing; none, including just 1s or 1p and
including both 1s and 1p. ISB in configurations with initial HF mixing may be fixed by adding correlations with IMSRG
flow as with the 0d and 0d-1s cases.

—99 —



5.2 Sources of spurious ISB

]40 no HF AWA (EN) (0p3/2 0p1/2 0d5/2)

+2
S=0 PO O @ = e = —{ §—00
0.00025 1 7
/
0.00020 1 /'_
| T i
~
2 0.000151
o
N~
~0.00010
—s— IMSRG (2)
0.00005 1 IMSRG (3n7)
-+~ IMSRG (3)
0.00000 1

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Number of terms in sum for (T%(s))

Figure 9. (Left) Cumulative sum shows that the third term in (4.16) is problematic for an asymmetric
140 reference and offdiagonal to be decoupled using the White generator with Epstein-Nesbet partitioning.
(Right) When Q(s) ~ n(s) is evolved as s — oo, the third term persists.

where |®¢) is the %O HF Minnesota reference state. We will now evaluate this commutator analytically
using Hugenholtz and ASG diagrams [12]| in order to further understand why this commutator did not
vanish.

Recall the rules for commutators of normal ordered operators (3.33). Setting the 1B and 3B parts
of Q to zero did not affect the code’s evaluation of (5.1), while erasing the 2B part eliminated it. This
meant we should only consider products in the commutator which yield a non-zero 0B and involve the 2B
part of Q, which we call Q5. Since the outer commutator in (5.3) must be between 7o and the inner
commutator, we need only consider the parts of T2 which give a non-zero [772]3, T2] op Since we are looking
for an overall 0B term. This leaves only T12B and TQQB. Because H°? only connects the reference state with
excited states, so does n9g. This means the only two-body diagrams np can produce are

Y

arn

ZAN

As a result, both the n?T? and T2n? terms from the commutator can’t be fully contracted down to a 0B
term given T% or Ty at either end of the diagram. Equation (5.1) reduces down to

([2(5), [s5), T*(0)]]) = —2(o|n(s)T>(0)n(s)|0)
= —2(®o|n25 ()15 (0)m28(5)| Po) — 2(Po|m2m (5) T35(0)728(5)| Do) (5.4)

These terms correspond to the two Hugenholtz skeletons in Figure 10, and can now be evaluated. To save
space, we will write the anti-symmetrised two-body (2B) matrix elements as

Npgrs = (pa|nlrs) — (pqln|sr),

and similarly for qurs. The matrix elements of the 1B and anti-symmetrised 2B parts of normal ordered
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5 Spurious Isospin Symmetry Breaking

T? are found starting with (2.25), where [z is the orbital p with ¢, flipped.
3
=1 Opq + Z kT pgns
k

T2 _ Chofiip (Oprdgs — OpsOqr)  nucleon type is not changed,
pgrs Chiip (057045 — Ops0gr) pt goes to n°, vice versa.

Ui T2

Laaare 4 ==X

¥

Chofiip = 1 /2 and Chip = 1 as in (2.25) but we can keep them explicit to track the influence of each part

of T2
<(1’) . (]) <a) . (b> . (1 . b . {I

pqgrs-*
Figure 10. Diagrammatic notation for the 72 term (left) and T%; term (right) in (5.4). Hugenholtz
skeletons are expanded into directed Hugenholtz diagrams each of which are then expanded into anti-
symmetrised Goldstone diagrams (ASG). These can finally be interpreted according to rules laid out in
[12].

Adding all 5 ASG diagrams yields (see agpendix) T2 pladder T2, b ladder
2B 2B T2, ring

11 — —
([n(s), [n(s), T =—2)" [%ab 5 Mabi (15 = 115) i3 P+ Mot V15 i 5775) + nijajnabz@”j'lﬁ} :
abij
(5.5)

The above expression only comes from the isospin-flipping matrix elements of T2, since [n(s), T*(0)] = 0.

The absence of any Cheip factor in the final expression in the appendix agrees with this expectation.
(5.5) was found to agree with IMSRG++ for every attempted configuration of the model space.

Asymmetric |P)

In our notation, where a, b, ¢, ... refer to particle states and i, j, k, ... refer to hole states, the occupation
numbers n; and 7, are redundant, as these spinorbitals are necessarily filled and empty respectively.
However, the occupation number 7; and hole number n; only necessarily vanish for a symmetric reference,
for which j and j are both hole states and b and b are both particle states (N = Z). For the RHS of (5.5)
to vanish, we should then have a symmetric reference and nop(s) as we will see.
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5.2 Sources of spurious ISB

Asymmetric 7(s)

For a symmetric reference, if nqpi; = 1.3, i = Natij = Thabii = -+ then the sum trivially vanishes. Note we

must have an even number of overlined indices to respect charge conservation. Since 1g;;(s) = Hg;}i j /Dabijs
there are two contributors to the isospin asymmetry;

° Hggij = %Fabij{dTlA)Tﬁ} (4.17) spoils isospin symmetry for an asymmetric core and thus excitations,

o A {Mcﬁller—Plesset (4.20)

) matrix elements break symmetry for asymmetric reference.
Epstein-Nesbet  (4.22)

If nop is not isospin-symmetric, (5.5) does not necessarily vanish as desired. If on top of this the reference
is also asymmetric, this could add another source of ISB due to 7; and 7;.

o | 1®0) S S S S A A A A
ERIIO) W W IT IT W W IT IT
o | g S A S A S A S A
Epst-Nesb | 0.001868 | 0.098568 0.000379 | 0.000379

Mol-Pless | 0.000000 | 0.303273 | 000000 | 76.906202 =5a003375.000833 | 0000000 | 0.000000
HF Ep-Ne | 0.00123 | 0.093808 0.000142 | 0.004746

HF Mo-PI | 0.000000 | 0.212356 | -0V00V0 | 214-325843 =5 G5m0710.006557 | 0018904 | 14650016

Table 1. ([n(s), [n(s),T2(0)]]) at IMSRG(2) s = 0 for different configurations with the O (or '°0)
reduced orbital space Opg /2, Op1 /2 and 0ds o with and without the HF diagonalisation step and 1p orbitals.
See Figure 11.

We can compare these considerations to a numerical calculation of the second nested commutator. In
Table 1, the symmetric (S) reference option is %0 (N = Z) while the asymmetric (A) one is good old
140 (see Figure 11). The White generator and imaginary time generators are abbreviated as W and IT
respectively. A symmetric offdiagonal H°? definition entails that we welcome the unoccupied neutron
Opy /2 orbital as part of the core to be decoupled, while the asymmetric definition excludes it.

Mgller-Plesset and Epstein-Nesbet partitionings of A for the White generator 7(s) = H°d /A both lead
to spurious ISB. However, for the MP case of SWS, the commutator vanished. This is because neither
the reference (and thus A) nor H°d broke isospin symmetry.

When the imaginary generator was substituted, the error vanished for a symmetric reference and H°4
(and thus 7). This is because, as in the SWS MP case, the denominator did not asymmetrise 1 despite
H°d being symmetric. From Table 1, we see the IT generator does not discriminate between EN and MP
partitioning. This is because we construct the model space such that the energy levels are non-degenerate
enough to allow lim, oo 7(s) = lim, oo H°d/A = 0, which means A is sufficiently big to ensure there is
no risk of different partitioning leading to different sgn (A)

Importantly, (T2) should exactly be equal to 2 for 1O or 0 for %0 since we have removed authentic
sources of ISB. Either way, the second nested commutator contributed more error than any other term,

so should be eliminated.

The sum (5.5) was reindexed in terms of orbital quantum numbers and isospin-basis elements for
a symmetric reference, e.g. in terms of (T' = 1,7% = 1|n|T" = 1,7% = 1),..., and was found to agree
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5 Spurious Isospin Symmetry Breaking

0ds/2 0ds2 excluded
P12 —@—@— | ——— excluded Op12 —@—@— o
0ps» -9OOO- -000®- ¢ ps2 -QOOO- -0
0s1/2 —@Q—Q@— —O—O0— 0s1/2 —@—@— —O—0—
pt n° pt o
A---A A...S
0ds /2 0ds/> excluded

Opl/ 2 . . . . excluded Opl/ 2 . . . . core
0ps2 -0 -000@®- ° 0ps2: - OO0~ -0000-
0512 —@—@— —@—@— 012 —@—@— —@—O@—

+ 0 + 0

p n p n

Figure 11. The different configurations of the reduced orbital space based on the isospin symmetry of
the reference and H°? respectively. For example, A---S is a model space with asymmmetric (A) reference
but symmetric (S) offdiagonal definition.

with the computed commutator (see appendix). Looking at Table 1, the HF diagonalisation step seems
to introduce spurious ISB before IMSRG. After exploration, this ISB persists after IMSRG flow which
should be investigated.

5.3 Remedies for spurious ISB

Eliminating the problematic commutator (5.1) by switching to an isospin-symmetric energy denominator
remedied the spurious ISB caused by 7(s) for isospin-symmetric |®q) and H°%. This is shown in Figure
12 and Figure 13 below. If the calculation demanded an asymmetric reference, then at some of the
highlighted terms in (5.5) sum might not vanish. But those without n; or 17 would cancel for a symmetric

140 no HF SITS (Op3/2 Op1/2 Odsp2)

0.002
s=0 §—00

0.000
f@: —— IMSRG (2)
5 —0.0021 ; -~ IMSRG (3n7)
& .- IMSRG (3)

—0.004

—0.006 T T T T T T T T T T T T T T T T

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Number of terms in sum for (72(s))
Figure 12. (Left) For a symmetric offdiagonal, the imaginary time generator as a whole is isospin

symmetric. So when we consider a symmetric reference, the sum (5.5) vanishes. The rest of the nested
commutators are muted by the factorial in the denominator (see (4.16)).
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140 no HF SWS (MP) (Op3/2 Op1/2 0ds2)

0.002
s=0 §—00
0.000 .
\
= \ —e— IMSRG (2)
5 —0.002 1 1 N IMSRG (3n7)
= \‘ -+~ IMSRG (3)
\
—0.004 b \‘
L‘x\.‘_,_o-—-o——-o——-o——-t
~0.006 SN S S A A S—— SN S S A A S —
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Number of terms in sum for (72(s))

Figure 13. (Left) MP partitioning of A paired with an isospin-symmetric H°? render the White generator
7(s) isospin-symmetric. As in Figure 12, the sum vanishes for a symmetric reference as a result.

generator 7)(s). This is apparent in Table 1 when going from AWS to AITS, whereby the generator becomes
symmetric so that the term vanishes. In other words, symmetrising the generator reduces the spurious ISB
but in principle it cannot be completely eliminated for an asymmetric reference IMSRG++ calculation.
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6 Conclusion

After reviewing the basics of nuclear structure, redefining the many-body problem with the particle-hole
formulation and introducing the IMSRG, we were able to identify three sources of spurious ISB in the
IMSRG:

1. an asymmetric reference state |®g),

as well as an asymmetric energy denominator SRG flow generator 7(s), e.g. the White or imaginary time
generator,

2. via an asymmetric energy denominator A,

3. via an isospin-asymmetric definition of H°d .

These sources were made manifest by analytically reducing the second nested commutator in the Magnus
cumulative sum for T?(s) by employing diagrammatic notation and looking at particle and hole states.

We found that to remedy the spurious ISB caused by 7(s) in this commutator (which would greatly
reduce the overall ISB), one would need to symmetrise A (by using the imaginary-time generator or
employing MP partitioning for the White generator) and have a symmetric reference and offdiagonal def-
inition.

This work lays a path forward for assessing spurious isospin symmetry breaking in 0 — 0 superal-
lowed beta decays when N ~ Z. For such systems the spurious ISB caused by IMSRG++ can be greatly
reduced by using a symmetric generator, which allows for more accurate calculations involving isospin.
As we saw in the introduction, this is a step toward a reliable framework for calculating dc.

When diagonalising to the Hartree-Fock basis, the problematic commutator displayed curious be-
haviour as the IMSRG flowed, which needs to be better understood since realistic calculations usually
involve a HF basis. The benefit of using a symmetric generator such as the imaginary-time generator
should be investigated, in particular for neutrinoless double-beta decay where N and Z differ greatly [21].
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A Appendix

T, diagrams

. 1 1
a) () + (a) (b) = 3 Z MijabToeNacij — 3 Z ”ijabTI%Wabil
abcij abijl

Z nljab 51)6 + Z Tbkck Nacij — Z nzjab 51] + Z le]k Nabil

abcz] abzgl
_ 2 - o - - T2 = T2 )
- 8 7]@]ab(nabz] nabm) + 2 nzgab bkcknacm 2 nzjab lkjknabzl
abij abcijk abijkl

_ 1 +Cnoﬂ1 (5b05k‘k - 5bk5kzc +Cnoﬂ1p(6l] 5kk - 5lk5k_j)
= 5 Z nijabnacij{ b - = Z NijabTabil +Cﬂip(5 -5

+Chip (Oped, 1 — 0,70 — 0,707
abcijk ﬂ1p( beCkk bk kc abz]kl 17%kk Ik k:])

t 1 +ChoflipOpcOrk 1 +Choflip010kk — CroflipOikOk;
=35 NijabMacij R N NijabMabily _~ . s ¢
2 ab%;k {_Cﬁlpnb(sbkékc 2 abzi];cl Chipn50i9y;

— 5 Z NijabTacij (Cnoﬂlp(sbc Z 5kk Cﬂlpnb Z 5bk5kc

abcz]
Y Z mﬂabnabzl Choflipdi; Z Okt — Choflip Z O1Okj — Cﬂipn]fz 51%‘516)
abzgl & &
Croflip Z Mijababij Z Okk — Cﬂip Z ngNijabNacijObe
abij abcij
1
_ 2 noﬂlp Z NijabTabij Z (5kk + Cnoﬁlp Z mmbnabzlélj —+ Cﬂlp Z n- nZ]abnabzl(slj
abij abijl abijl
=0- §Cﬂip Z ngMijabTabij + §Cnoﬁip Z NijabMNabij + icﬂipnjz NijabMabij
abij abij abij
1
= 5 Z nijabnabij(cnoﬂip + Cﬂip (’I’L; - ng))
abij

Téai = 0 since particle states cannot be hole states and d.z = 0.

P OOhg = 2o 0,5 = Oy
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T2, particle ladder

. 1 1
()= 3 Z nijasz?bcdncdij =3 Z NijabTedij

{ +Cnoﬂip (5(10 5bd - 5ad 5bc)
abedij abedij

+Cﬁipﬁ5ﬁg((5a55bg — 5a35bg)

1
= g Z MNijabTedij (Cnoﬂip (6ac5bd - 5ad5bc) + Cﬂipﬁﬁﬁg(éaEébg - 5(1351)6))

abedij
1 1
=3 Z NijabNedij Croftip (0acObd — Oaddbe) + 3 Z NijabNedij ChipTaliy(0aedyg — 0,706e)
abedij abedij
1 1 _
= gcnoﬂip Z Nijab(Nabij — Mbaij) + gcﬂip Z a5 Nijab(Tabi; — Mraiz)
abij abij
+ 1 1 _
= 4 Cnotlip > NijabTavij + - Ciip > Malghijabtigg;
abij abij
T2; hole ladder
1 1 "‘Cnoﬂi (6kz5l - 5k 6l2)
(a) (b) =< U"abT2 iiabkl = 35 NijabNabkl P / J
8 a%;cl ST a%;cz I HCipnng (83305 — 0y5077)
1
=3 > ijabNavki (Croftip (Skidt; — Ok;j0i) + Cipnznz (84307 — 6,507))
abijkl
1 1
=3 Z NijabNabkl Cofiip (0ki01j — Ok;j01:) + 3 Z NijabNabki Chipng5 (0,705 — 0450;7)
abijkl abijkl
1 1
= gCnoﬂip Z Nijab(Nabij — Mabji) + gcﬂip Z ngnjmjab(nabrj - nabﬁ)
abij abij
1 1
= Crottip > NijabTavij + 7 Ctiip > nnniab
abij abij
TTerms double since antisymmetrised matrix elements satisfy Apgrs = —Agprs-
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2 .
T55 ring

(Z) (a) = - Z nijbaTb%ccjncaik = - Z NijbaTlcaik

{+Cnoﬁip(5bc5kj — 0bj0ke)
abcijk abcijk

+ Cﬂip (ﬁgﬂ;(gbg(skg - ﬁjngébjékg)

_ Z i ibal) _k{+0noﬂip5bc5kj
T WOICat ) 4 CipMpn05e0,5 — Chiplsnedy:0kz
abeigh flipTtyT450be0; flipTt51te0y;Oke
= _Cnoﬂip Z nijbancaikébc(skj - Cﬂip Z nijbancaikﬁgnfébﬂskj + Oﬂip Z nijbancaikﬁjnfébjéké
abcijk abcijk abcijk

= —Choflip E Nijba"bai; — Chip E 15 7ijba a7 + Cip E 5NN, 575 Meaic
abij abij actj

== ijab(Cuottipabi + CipMyn3,5:5) + Chiip D T35 07 abi
abij abij

Reduced diagram sum

T}iB T22B p ladder T22B h ladder

1

1 T — —
([n(s). [2(), T*(0)]]) = ~2Chip Y [mjan( b (5 — 15) +3 i Tl Mg Ma105 —as5107) + g5

T22B ring

abij

Isospin conserving

not
Ppsym S 1 1
=T _2Ca, Y [|<10|77|10>\2 + §|<11|77|11>|2 + §|<1—1|77|1—1>|2 — ({10n[10) + (00[7[00)) ((11|n|11) + (1-1|n|1-1))
abij

+ 51 10[7{00)? + Z{00[10)12 ~ ({10]9]00) + (00[r{10)) ((11}]11) — (1-1]gf1-1)) |

Isospin mixing
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